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Abstract 

Stack Overflow (SO) is one of the largest discussion platforms for programmers to communicate their 
ideas and thoughts related to various topics like software development and data analysis. Many program-
mers are actively contributing to this platform and discuss about Python programming language. To better 
study the topics related to Python questions posted on the platform, a text analytics approach incorporating 
text preprocessing steps and Latent Dirichlet Allocation (LDA) topic modelling algorithm is proposed. The 
two main objectives of this study are: to discover and compare the topics of the questions about Python 
programming language posted on SO from 2008 to 2016, and to analyze questions about Python program-
ming language with high votes posted on SO from 2008 to 2016 using topic modelling technique with a 
suitable number of topics. From the study, we find that the topics of the Python questions posted on Stack 
Overflow have gradually shifted towards those related to data modelling and analysis from 2008 to 2016. 
Furthermore, the study also shows that a suitable number of topics using the topic modelling technique 
yield a high coherence score concerning the topic model in use, which is important to extract more mean-
ingful topics from the collection of Python questions. 

Keywords: Stack Overflow, text processing, text analytics, topic modelling.

 

1. Introduction 

Stack Overflow (SO) is one of the largest open-
source software platforms for programmers to 
ask and discuss programming questions. This 
platform includes voting, badging and user repu-
tation systems to ensure that the questions and an-
swers posted on the platform are meaningful or 
relevant to its users. Therefore, SO ecosystem en-
courages many programmers to not only help 
each other solve their programming questions 
voluntarily, but also to showcase their ability in 
programming problem solving and seeking a bet-
ter job (Xu et al., 2020). Nevertheless, with its 
rise in popularity, issues such as duplication of 
questions (Wang et al., 2020) and the quality of 
the answers in response to the questions on the 
platform (Meldrum et al., 2020) greatly affect the 
browsing experience by programmers when 
searching for answers through this platform. 

Many programming questions have been 
posted on SO since its official launch in 2008.  

 

 

 

These include questions related to different 
programming languages such as C language, Py-
thon, Java, and R, to name a few. Specifically, Py-
thon and R are the two programming languages 
most highly associated with the questions related 
to data analysis posted on the platform. This is 
reasonable because there are many existing li-
braries and packages useful for data analysis in 
both Python and R. This kind of information, 
which can be extracted using text analytics ap-
proaches, can serve for various usages. For exam-
ple, it can be used by the programming language 
development team to identify the aspects of the 
language that are most relevant to these topics so 
that they can work on improving the language in 
terms of syntax, features, and even documenta-
tions. Besides, it can also be used as a guideline 
for the programming language course team to 
identify the important topics to be covered in the 
content of their courses to meet the requirements 
of the learners. 

Several recent studies have been conducted to 
analyze the questions and answers (Q&A) about 
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computer programming and software develop-
ment posted on SO. These include several works 
performed to extract and classify the topics of 
discussion on SO related to mobile application 
development for different platforms, such as An-
droid, iOS, and Window Phones (Ahmad et al., 
2019; Beyer et al., 2020; Fontão, et al., 2018). In 
these studies, the analyses are performed without 
splitting those discussions according to years to 
discover the trend or to compare the change of the 
topics discussed over several years. Furthermore, 
it is also important to identify the important top-
ics from the questions of a selected programming 
language on the platform that are most relevant to 
the users. In this context, a relevant question 
means any question posted on SO that receives 
many votes from users who find it helpful for 
them through the voting system implemented on 
this platform. 

In this study, a text analytics approach involv-
ing text preprocessing steps and topic modelling 
algorithm will be used to analyze the questions 
related to Python programming language posted 
on SO. The two main objectives of this study are 
listed below: 

 To discover and analyze the topics of the 
questions about Python programming language 
posted on SO from 2008 to 2016 to identify and 
compare the topics being discussed in each year.  

 To analyze questions about Python program-
ming language with high votes posted on SO 
from 2008 to 2016 using topic modelling tech-
nique with a suitable number of topics. 

This paper is structured as follows: Section 2 
discusses the related works, including the appli-
cation of topic modelling algorithms on SO and 
other forums. Section 3 describes the proposed 
solution to address the two main objectives of this 
study, including the dataset description and pre-
processing steps, the text preprocessing steps, 
and the topic modelling approach. Then, Section 
4 presents the analysis of findings from the pro-
posed solution. Finally, Section 5 discusses the 
work done and some limitations of this study and 
Section 6 summarizes the key points discussed 
throughout this paper. 

2. Related Works 

As a large open-source software platform, the 
Q&A posted on SO contains a fruitful source of 
information that can be studied and analyzed to 
understand the topics being discussed by pro-
grammers from time to time. Text preprocessing 
techniques and topic modelling algorithm such as 

Latent Dirichlet Allocation (LDA) is used in sev-
eral recent works to study the textual data ex-
tracted from the Q&A available on SO for various 
purposes. For example, LDA algorithm is utilized 
by researchers to extract the topics of the ques-
tions related to various programming languages 
for further analysis. The study by Ali and Lin-
stead (2020) focuses on several programming 
languages such as Python, JavaScript, C++, and 
R to word cloud discover the topics related to 
these programming languages that have been ex-
hausted for 10 years. Topic exhaustion is a term 
describing the occurrence where the number of 
questions related to a topic posted on SO de-
creases and it takes a longer waiting time to ob-
tain an answer for those questions over the years. 
The study by Chakraborty et al. (2021) is con-
ducted to identify difficult topics for questions re-
lated to new programming languages such as Go, 
Swift and Rust posted on SO. It is found that top-
ics related to “data” and “data structure” are dif-
ficult topics regardless of programming lan-
guages. Another study is conducted using the 
LDA algorithm by Marçal et al. (2020) to identify 
skill gaps between college and workspace by an-
alyzing topics of the questions related to Com-
puter Science posted on SO. 

Topic modelling techniques are also used by re-
searchers to analyze the topics of discussions on 
different Q&A websites. Stack Exchange, being 
a network of multiple online Q&A websites in a 
vast variety of fields (including SO – the main 
Q&A website under Stack Exchange dedicated 
for programmers), is often the choice of many re-
searchers to analyze the trends of popular topics 
being discussed among communities in different 
fields. For example, the threads from Data Sci-
ence Stack Exchange (and Reddit) are analyzed 
using the LDA algorithm by Karbasian and Johri 
(2020) to identify not only the important Data 
Science topics and useful examples relevant for 
teaching Data Science courses, but also various 
topics related to professional developments. On 
the other hand, the LDA algorithm is used by 
Tamla et al. (2019) to identify the thoughts and 
needs of serious games (SG) developers from 
their discussions on GameDev Stack Exchange. 

On top of that, the LDA algorithm is also com-
monly used for topic extraction of different fields 
in several other online forums and social media 
networks. A combination of Twitter and Reddit 
datasets are used by Curiskis et al. (2020) to ex-
tract the topics being discussed by users in online 
social networks (OSNs) using the LDA topic 
modelling algorithm. Besides, the LDA topic 
modelling algorithm is used to analyze the con-
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tent specific to eating disorder on Reddit (Moess-
ner et al., 2018) and to extract patient knowledge 
through their narratives on a patient forum (Dirk-
son, et al., 2019), respectively. Another applica-
tion of the LDA topic modelling algorithm is pre-
sented by Jaworska and Nanda (2018) to examine 
the change of topics over time in the large corpus 
of corporate social responsibility (CSR) reports 
from the oil sector. The analysis shows that the 
popular topics of the CSR reports have shifted 
from the topics related to “climate change” to 
those related to “human rights”. 

 

The works done by researchers using the topic 
modelling approaches have opened the door for 
countless possibilities for future studies to ana-
lyze texts from different Q&A websites and fo-
rums. In this study, the LDA topic modelling al-
gorithm is used to analyze Python questions 
posted on SO in two ways: first, to identify and 
compare the topics discussed by programmers on 
the platform for different years; and second, to 
extract the topics of the Python questions with 
high votes on the platform. 

3. Proposed Solution 

To achieve the two objectives in this study, we 
propose a text analytics solution that utilizes text 
processing techniques and the LDA topic model-
ling algorithm to study and identify the topics of 
the Python questions posted on SO from 2008 to 
2016. 

 

 

 

Fig. 1. Overall framework of the proposed solution. 

There are two different experiment sets de-
signed to analyze these Python questions. In the 
first experiment set, the selected Python ques-
tions are split into different groups according to 
the creation year of these questions on the plat-
form. Then, the topic models are built for the re-
spective group of questions to extract the topics 
of Python questions created in each year. Finally, 
a comparison is made between topics extracted 
from different groups of Python questions to in-
vestigate any changes in topics of Python ques-
tions posted on SO from 2008 to 2016. In the sec-
ond experiment set, the set of Python questions 
receiving at least 4 votes from SO users from 
2008 to 2016 are studied to identify the relevant 
topics of Python questions among SO users. In 
this experiment set, different numbers of topics, 
k, are tested to identify the optimal k to build a 
topic model, which covers different topics of the 
Python questions receiving high votes on the plat-
form. 

This study is conducted using the Python pro-
gramming language. Fig. 1 shows the overall 
framework of the proposed solution. The descrip-
tion and preprocessing steps of the dataset used, 
the text preprocessing steps, the topic modelling 
techniques used for model building, and the 
model evaluation used in the proposed solution 
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are more thoroughly discussed next in the follow-
ing subsections. 

3.1 Dataset Description and Preprocessing 

The dataset used in this study is the Python 
questions dataset (Overflow, 2019) which can be 
retrieved from the Kaggle website. This dataset 
consists of three CSV files, namely: “An-
swers.csv”, “Questions.csv” and “Tags.csv”. For 
this purpose, our work focuses on “Ques-
tions.csv”, the CSV file that stores 607,282 Py-
thon questions posted on SO from August 2008 
to October 2016. Table 1. Data description of the 
Python questions dataset. 

 summarizes the details and descriptions of 
each attribute in the Python questions dataset. 

Table 1. Data description of the Python questions dataset. 

Attribute 

name 
Attrib-

ute type 
Attribute description 

Id Categori-

cal 

The unique identifier of Py-

thon questions posted on SO. 

OwnerUserId Categori-

cal 

The unique identifier of SO 

users who post the Python 

questions. 

CreationDate Date and 

time 

The recorded date and time 

at which the Python ques-

tions are posted SO. 

Score Numeri-

cal 

Total votes received by the 

Python questions on SO. 

Title Text A user-generated title for the 

Python questions on SO. 

Body Text Description of the Python 

questions containing normal 

text and code blocks, written 

in HTML script. 

Since SO is an English-only Q&A website ded-
icated to the global community, the texts used in 
the Python questions dataset are very unlikely to 
contain non-English words that are not under-
stood by SO users. In addition, SO users can 
choose to downvote any questions which are not 
posted in the English language. Therefore, no 
special care is taken to filter out Python questions 
not written in the English language from the da-
taset before the analysis. 

In this study, the main source of textual data 
used for the analysis comes from the “Body” at-
tribute. This is because the “Body” attribute con-
tains more detailed descriptions than the “Title” 
attribute about the Python questions posted by SO 
users. There are some questions with poorly de-
fined titles that do not describe the questions well, 

such as “Introducing Python” and “Most possible 
pairs”. Furthermore, the descriptions of the ques-
tions provided are usually complete English sen-
tences which can better represent the frequency 
of each word being used in the written English 
language. The data preprocessing steps, which 
are crucial to ensure the quality and validity of 
the data used to build the topic models, are con-
ducted at two different stages. The first stage is 
conducted once on the original Python questions 
dataset to reduce the amount of data and select 
relevant features to be used for both experiment 
sets. On the other hand, the data preprocessing 
steps during the second stage are conducted spe-
cifically for each experiment sets by using differ-
ent attributes. 

a) Data Preprocessing: Stage 1 

During this stage, the “Id” and “OwnerUserId” 
attributes are removed from the dataset because 
these attributes do not help in our study to analyze 
Python questions posted on SO. Next, Python 
questions receiving negative scores (i.e., more 
downvotes than upvotes) by SO users are also re-
moved from the dataset. Then, to prepare the data 
for the first experiment set, a new attribute “Cre-
ationYear” is derived from the “CreationDate” at-
tribute from the dataset. This attribute stores only 
the year when the Python questions are posted on 
SO to enable the grouping of each question into 
its respective year group. Finally, the selected at-
tributes of the Python questions dataset for fur-
ther analysis are “Score”, “Body” and “Crea-
tionYear”. 

b) Data Preprocessing: Stage 2 

For the first experiment set, the “CreationYear” 
attribute is used to split the Python questions into 
different groups according to the creation year of 
each question. On the other hand, for the second 
experiment set, Python questions with “Score” 
below 4 are filtered out. After performing this 
step, the number of Python questions used for fur-
ther analysis has reduced to only 74,195 ques-
tions, which is sufficient for the analysis in this 
study. 

3.2 Text Preprocessing 

a) Text Preprocessing: Stage 1 

During this stage, several text preprocessing 
steps are used to prepare the textual data for both 
experiment sets, including the removal of punc-
tuations, lowercasing the texts, and the removal 
of code blocks. The first two steps: removing 
punctuations and lowercasing the texts are crucial 
to removing the unnecessary parts from the text 
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which can introduce noise to the analysis of the 
Python questions. 

Furthermore, special treatment is required to 
preprocess the descriptions of the Python ques-
tions stored in the “Body” attribute due to several 
reasons. First, the descriptions of the Python 
questions are written in HTML script, for in-
stance, each paragraph is enclosed within “<p>” 
and “</p>” tag pairs. Second, including source 
code of Python or any programming language in 
the descriptions of the Python questions (en-
closed within “<code>” and “</code>” HTML 
tag pairs) will certainly affect the result of the 
analysis in this study. Therefore, steps are taken 
to first remove the source code from the descrip-
tions. Then, the descriptions of the Python ques-
tions are transformed from HTML script to nor-
mal English text without HTML tags. This whole 
process is performed using the BeautifulSoup li-
brary from the bs4 module in Python. 

b) Text Preprocessing: Stage 2 

The text preprocessing steps performed during 
this stage are a series of steps within a text nor-
malization pipeline. In a text normalization pipe-
line, all the texts are converted from human-read-
able texts, including slang words and informal 
texts, into their corresponding machine-readable 
forms (Rahate and Chandak, 2019). The steps in-
cluded in this pipeline are word tokenization, stop 
words removal and lemmatization. In natural lan-
guage processing (NLP), tokenization is defined 
as the task to split a stream of characters into 
words and punctuations. More specifically, there 
are two types of tokenization methods used in 
NLP, which are word tokenization and sentences 
tokenization. Word tokenization is used to sepa-
rate words via unique space character whereas 
sentences tokenization is used to perform tokeni-
zation based on sentence boundaries and one of 
the examples is punctuations. In this study, word 
tokenization is the method performed to split the 
words in the description of each Python question 
into individual units of words or tokens. In Py-
thon, word tokenization is performed using “sim-
ple_preprocess” utility functions implemented in 
the Gensim library. 

Another text preprocessing step is stop word re-
moval. In NLP, stops words or noise words are 
the words that contain little information that is 
not required in the analysis process (Kaur and 
Buttar, 2018). Therefore, stop words are often re-
moved from the text corpus to improve the effi-
ciency with little influence on the results of NLP 
tasks. Stop words are usually the most common 
words in a language. Some stop words in the Eng-
lish language are “I”, “am”, “is”, “are”, “this” and 

“that”. In this study, the stop words removed from 
the list of tokenized words are English stop words 
listed in the NLTK library in Python. 

Finally, lemmatization is the technique used to 
complete the text normalization pipeline. Lem-
matization is performed to convert the tokenized 
words into their base form or dictionary form. For 
example, the words “use”, “used”, “uses” and 
“using” are all conjugated verbs that are derived 
from and will be converted to their base form 
“use” after lemmatization. One benefit of per-
forming lemmatization is that it helps reduce the 
impact of inflection on English words, such as 
treating derived words in a text corpus as differ-
ent words, to the results generated by the NLP 
models. The lemmatization in Python is per-
formed with the core English language model us-
ing the SpaCy library, a popular NLP library 
along with NLTK. 

3.3 Model Building 

Topic modelling is one of the applications in 
text analytics used for studying and identifying 
the underlying key topics of texts and documents, 
which are often referred to as the combination of 
different topics (Curiskis et al., 2020). In simple 
terms, the goal of a topic modelling task is to ex-
tract different “topics” hidden within the given 
texts and documents through a topic model. A 
topic model is a generative model driven by the 
probability framework to help identify such top-
ics. In general, a topic is associated with different 
words and phrases from the texts and documents 
that tend to occur together. In other words, similar 
words or phrases tend to be grouped within the 
same topic. 

One of the popular algorithms used in topic 
modelling is the Latent Dirichlet Allocation 
(LDA) model. LDA works by assuming that there 
is a mixture of different topics within the texts 
and documents (Alghamdi and Alfalqi, 2015). 
There is a probability distributed over each topic, 
measuring the likelihood that a word appears in 
each topic. LDA algorithm then assigns these 
words to the topic based on the probability that 
these words appear in the corresponding topics. 
In the end, the list of the most probable words in 
each topic indicates the context of the topics. In 
this study, the LDA model is built using the Gen-
sim library in Python. 

3.4 Model Evaluation 

Due to its unsupervised nature, a topic model-
ling task is often used for exploratory analysis. 
The dataset is not split into training and test da-
taset during the topic model building process. 
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Therefore, the challenge in evaluating the model 
performance of a topic modelling task is similar 
to those unsupervised learning tasks, in which, 
there is no ground truth label used for evaluating 
the performance of a topic model. This is differ-
ent from another text analytics task called topic 
classification, which is supervised learning tasks. 

In this study, two approaches are used to eval-
uate the topics generated for each topic model, 
namely: the inspection using word cloud and co-
herence score. Evaluation by inspecting the word 
cloud of each topic is treated as an informal ap-
proach, whereas the coherence score, which re-
lates to the computation of the similarity of words 
within each topic, is a formal approach to evalu-
ate the performance of a topic model. 

a) Word Cloud 

Word cloud is a visual representation that cap-
tures and displays a list of words from a docu-
ment, which means a “bag of words”, and their 
corresponding frequencies. Visually speaking, 
the more frequent a word appears in the docu-
ment, the bigger the size of the word in the word 
cloud. In this context, we treat each topic as a 
document, in which, the frequency of each word 
in the word cloud is simply the probability that 
the word appears in that topic. With this conven-
tion, we can visually study the list of most com-
mon words that appear in topics generated by the 
topic models. In Python, word clouds can be gen-
erated using the “wordcloud” library. 

The advantages of using word clouds to visu-
ally represent the topics generated are, it is intui-
tive and engaging. Humans are visual creatures, 
in such, there is a region in the human brain spe-
cialized for processing visual elements. There-
fore, the information delivered through a word 
cloud can be easily perceived by humans in gen-
eral. However, the application of word cloud to 
evaluate the performance of a topic model could 
be subjective. This means different people might 
perceive the word cloud differently due to the dif-
ferences in expertise and cognitive ability among 
different people. Therefore, word cloud is used as 
an informal approach to evaluate the performance 
of a topic model. 

b) Coherence Score 

Another approach that can be used to evaluate 
the performance of a topic model is by measuring 
the coherence score of a topic. Coherence score, 
which is also referred to as the topic coherence 
measures, is obtained by computing the similari-
ties of most probable words in each topic seman-
tically (Röder et al., 2015). A high coherence 

score implies that there is a high degree of simi-
larities among words within the same topic, and 
thus the topic is said to be more coherent. There-
fore, the words are more associated with each 
other, which implies that the topic is relevant and 
not merely because the same words appear to be 
the high scoring words across different topics. 

The coherence score for one topic can be cal-
culated using the following formula, Eq. 1: 

'V71& � ∑ '63u;R , ;vwRxv          (1) 

where vi and vj are two words in the selected 
topic such that i and j are both integer values not 
more than the total number of words in the topic, 
and sim(vi,vj ) is the similarity function used to 
calculate the word similarity between vi and vj. 
After obtaining the coherence score for each topic, 
the coherence score for the topic model is calcu-
lated by taking the average value of the coherence 
scores for all topics generated by the topic model. 

A model performance evaluated using numeri-
cal measures is often perceived as a more formal 
approach. Therefore, it is used for our purpose of 
evaluating the performance of the topic models in 
our proposed solution. In Python, the coherence 
score can be calculated by calling the “get_coher-
ence” method of an instance of “Coherence-
Model” object in the Gensim library. The “coher-
ence” and “topn” parameters are set to their de-
fault values, “c_v” and “20” respectively. 

4. Analysis of Findings 

a) Experiment 1: Comparing the topics of 
Python questions in different years 

The number of topics, J  must be specified 

before building topic models using LDA algo-

rithms. In this case, we choose J � 5 for the first 
experiment set to identify the 5 topics hidden 
within the descriptions of Python questions for dif-
ferent years. These coherence scores of the topic 
models from 2008 to 2016 are plotted in a bar chart 
in 錯誤! 找不到參照來源。. 
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Fig. 2. Bar chart showing the coherence scores for topic 
models from 2008 to 2016. 

From Fig. 2, the coherent score of the topics ex-
tracted from the Python questions in 2008 is the 
lowest among the scores of those in other years. 
This might be because the data only contains the 
Python questions posted in SO from August to 
December 2008. Therefore, the coherence score 
of the topics in 2018 might be susceptible to un-
desirable behaviour such as noise and scarcity in 
the textual data. The word clouds for each topic 
of Python questions posted on three selected 
years: 2008 (the first year), 2013 (the year with 
the highest coherence score) and 2016 (the last 
year), are shown in Fig. 3, 4 and 5 respectively. 

 

Fig. 3. Word clouds for topics extracted from Python 
questions in 2008. 

 

Fig. 4. Word clouds for topics extracted from Python 
questions in 2013. 

 

Fig. 5. Word clouds for topics extracted from Python 
questions in 2016. 

By visually inspecting each word cloud gener-
ated from the extracted topics within the same 
year, the same words might appear multiple times 
in different topics extracted from the topic model. 
For example, in 2008 (see 錯誤! 找不到參照來

源。), the words “file” and “way” appear as words 
with high probability score in three of the ex-
tracted topics. In 2016 (see Fig. 5), two of the 
words: “try” and “code”, are also common words 
in at least three extracted topics in that year. This 
implies that the topics extracted from the Python 
questions posted on SO within one year are quite 
similar to each other, even though the list of high 
scoring words in each topic might differ slightly 
from one topic to another. 

Comparing the topics extracted from the Py-
thon questions across different years, there is a 
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gradual shift towards the keywords such as “ta-
ble”, “datum”, “row” and “column” from 2008 to 
2016. These words are not among the high score 
words in any topics extracted in 2008. This shift 
might be due to the emergence of Python as an 
important programming language mainly used by 
software engineers or data scientists to perform 
their daily tasks involving transforming and pre-
processing data stored in table format. On the 
other hand, words such as “write” and “import” 
only appear as high score words in one of the top-
ics in 2008. This could imply that the questions 
related to importing libraries and writing files 
have been resolved in earlier days. Users might 
have already gathered enough information from 
earlier questions to solve similar problems with-
out having to post new questions to the platform. 
Therefore, it can be said that there is no one-to-
one correspondence between the topics extracted 
from one year to another because some topics in 
the past might not stay relevant today and they 
might eventually be replaced by newer topics in 
later years. 

Finally, the word “use” seems to have a high 
probability score in all the topics extracted from 
Python questions for any given year. Therefore, 
the word “use” might be one of the domain-spe-
cific stop words which should be removed from 
the texts and documents. Table 2. List of high scor-
ing words for each topic extracted from Python ques-
tions in 2008, 2013 and 2016. 

 summarizes the topics extracted from Python 
questions in 2008, 2013 and 2016, their most 
probable labels and the corresponding words in 
each topic. Note that the word “use” is removed 
from the lists in the table because it appears as 
one of the six words with the highest probability 
score in all topics from different years. 

b) Experiment 2: Showing the topic for ques-
tion with high scores 

First, a baseline topic model is first built by us-
ing the LDA algorithm, with the number of topics, 
k= 5 specified. The topic model with 5 topics is 
chosen as the baseline model because we have 
also set the number of topics, k = 5 for all topic 
models in the first experiment set. The results 
from the first experiment set show that topic 
models with number of topics, k = 5 can generate 
good results in this study. However, it is also im-
portant to test different number of topics which 
yields the best model performance measured by 
the coherence score. Therefore, a hyperparameter 
tuning procedure is performed to search for the 
optimal value of k from a list of numbers from 2 
to 10. The coherence scores for each topic model 

with the different number of topics are plotted in 
a bar chart in Fig. 6. 

Table 2. List of high scoring words for each topic ex-

tracted from Python questions in 2008, 2013 and 2016. 

Year Topic Label Words 

2008 #0 Python syntax List, way, would, func-

tion, want, string 

#1 Server appli-

cation 

Thread, run, file, email, 

server, application 

#2 File I/O, im-

port 

Code, file, would, 

write, import, script 

#3 Other Would, way, try, work, 

make, need 

#4 File applica-

tion 

File, work, want, try, 

way. run 

2013 #0 File applica-

tion 

File, try, code, error, 

line, get 

#1 Functional, 

object-ori-

ented 

Function, class, object, 

would, way, call 

#2 Server appli-

cation 

Run, try, work, error, 

script, server 

#3 List, Array List, value, number, 

would, want, way 

#4 Data model, 

table form 

User, page, try, model, 

table, get 

2016 #0 File applica-

tion 

File, error, try, run, 

work, get 

#1 Server appli-

cation 

Work, try, code, run, 

server, get 

#2 Plotting data Image, code, datum, try, 

would, plot 

#3 Python Syntax List, function, code, 

value, want, try 

#4 Data model, 

table form 

Column, row, datum, 

want, table, value 

Figure 6 shows that J = 8 yields the best 
topic model with the highest coherence score of 
0.4482. Therefore, another topic model is built by 
using the LDA algorithm with the number of topics, 
J = 8 specified. The word clouds for each topic of 
Python questions with a high number of upvotes 
for topic models with 5 and 8 topics are shown in 
Fig. 7 and Fig. 8 respectively. 
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Fig. 6. Bar chart showing the coherence scores for topic 
models from 2008 to 2016. 

By comparing the two sets of word clouds in 
Fig. 7 and 8 respectively, it can be observed that 
some of the topics relevant to the Python program-
mers are not significant in the baseline topic model. 
For example, topics related to “import” and “col-
umn” are not significant in extracted topics of the 
baseline topic model. These two words do not have 
their topics. Instead, they can be found in some 
other topics extracted using the same model. On 
the other hand, the words “import” and “column” 
are among the highest-scoring words in Topic #4 
in Topic #5 respectively, extracted using the best 
topic model. The associated words in Topic #4 in-
clude: “file”, “instal” and “package”, indicating 
that this topic is related to the installation and im-
porting of Python packages. Whereas in Topic #5, 
the associated high scoring words include: 
“model”, “datum”, “row” and “table”, which might 
be a topic related to the data analysis: data model 
or data stored in table forms. 

Fig. 7. Word clouds for topics extracted from Python 

questions with a high score using the best topic model – 

topic model with 5 topics. 

 

Fig. 8. Word clouds for topics extracted from Python 
questions with a high score using baseline topic model 

– topic model with 8 topics. 

It is also observed that the high scoring words 
within the topics extracted using the best topic 
model (k = 8, which has a higher coherence score) 
are more associated with each other, as compared 
to those extracted using the baseline topic model 
(k = 5, with a lower coherence score). The list of 
topics extracted from both topic models, the most 
probable labels and the corresponding words of 
each topic are summarized in Table 3. Again, the 
word “use” that appear in all the topics is re-
moved from the list of words in this table. 

5. Discussions 

Based on the experiment sets, it is shown that 
topic modelling is useful in extracting the topics 
from the description of the Python questions 
posted on SO. The topics are also manually la-
belled according to the high scoring words within 
each topic. In this section, we will discuss some 
improvements which can be performed on the 
study when extracting the information from the 
description of the Python questions with our topic 
modelling approach. 
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Table 3. List of topics extracted from the baseline and 
the best topic models, the most probable labels and the 

corresponding words for each topic. 
Model Topic Label Words 

Base-

line 

 

#0 Functional, 

object-ori-

ented 

function, class, ob-

ject, call, method, 

code 

#1 List, array List, value, would, 

way, want, number 

#2 Text, string File, line, string, try, 

code, plot 

#3 Python 

script 

Run, try, error, work, 

get, script 

#4 Others User, image, model, 

try, get, page 

Best #0 Functional, 

object-ori-

ented 

Function, class, ob-

ject, call, method, re-

turn 

#1 List, array List, value, would, 

way, number, want 

#2 File I/O File, string, line, text, 

read, want 

#3 Server ap-

plication 

Server, request, pro-

cess, run, time, test 

#4 Package im-

port and in-

stallation 

File, import, package, 

instal, try, version 

#5 Data model, 

table form 

Column, model, user, 

want, row, create 

#6 Handling er-

ror 

Error, try, get, code, 

work, follow 

#7 Python 

script and 

command 

Run, script, program, 

command, window, 

work 

First, during the text preprocessing steps, only 
the most common English stop words are re-
moved. That means, the stop word removal only 
handles the most frequent words in general Eng-
lish language such as “a”, “the”, “I”, “me”, “by” 
and “was”. There is no additional step performed 
to collect the domain-specific stop words before 
performing stop word removal. Therefore, the ex-
periment results might be influenced by these 
words to a certain degree. For example, the word 
“use” that appears as the high scoring words in 
every topic might be a domain-specific stop word. 

Second, the hyperparameter tuning process in 
the second experiment set only involves changing 
the number of topics to a limited range of values 
(from 2 to 10) to obtain the best topic model. With 
this, there is a high chance that some better topic 
models (which might yield even higher topic co-
herence score using the same dataset) are missed 
out. However, by adding more hyperparameters, 
the computational resources required to complete 

the hyperparameter tuning process will increase 
exponentially. 

The future works include efforts to collect do-
main-specific stop words and exclude them from 
the analysis of the Python questions posted on SO. 
Besides, a more thorough hyperparameter tuning 
process can be performed over a wider range of 
number of topics (say up to 50 topics), or by in-
cluding more hyperparameters to the process to 
search for the model settings that yield the best 
topic model to the dataset. On top of that, this so-
lution can be adapted to perform text analytics on 
the questions of other programming languages 
posted on SO, such as R, C++ and Java. 

6. Conclusion 

In this study, we apply topic modelling, a text 
analytics approach to study the Python questions 
posted on SO from 2008 to 2016. Specifically, we 
study the description of these questions because 
the description contains more semantic infor-
mation than the title of these questions. Due to the 
unstructured nature of textual data, we perform a 
series of text preprocessing steps on the descrip-
tions of the Python questions such as removing 
punctuations and changing the texts into lower-
case, transforming the HTML script to normal 
text, tokenization, stop word removal and lemma-
tization. Then, two experiment sets are performed 
on the preprocessed texts. First, the questions are 
grouped into years and then a topic model is built 
for each group using the LDA algorithm. The ex-
tracted topics are then compared across different 
years to identify the trend and changing topics of 
questions over years. Second, the questions with 
a score of at least 4 are used to build another topic 
model to identify the topics that cover these ques-
tions. In both experiment sets, the evaluation cri-
teria used are the inspection through the word 
clouds (informal approach) and the computation 
of the coherence score of each topic model (for-
mal approach). 

Through the results obtained from the first ex-
periment set, it is observed that there is a gradual 
shift to the topics of the Python questions posted 
on SO from 2008 to 2016. The topic about the 
data model and table becomes more prominent 
over the years. For example, there is one topic 
with keywords such as “table”, “datum”, “row” 
and “column” generated by the topic model in 
2016. These keywords are not significant in any 
topics generated by the topic models from earlier 
years. At the same time, the topic with keywords 
related to file input and output such as “code”, 
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“file”, “import” and “script” become less signifi-
cant over the years.  

On the other hand, the results obtained from the 
second experiment set shows that a suitable num-
ber of topics to the topic model built using the 
LDA algorithm yields extraction of more mean-
ingful topics from Python questions with high 
votes posted on SO. In this study, the topic model 
with k = 8 yields the highest coherence score. The 
topics related to Python package installation and 
importing, and data models are more prominent 
in this topic model as compared to the baseline 
model in this experiment set (k = 5) with a lower 
coherence score. Therefore, the topic model with 
the right number of topics that yields a higher co-
herence score, the topic model is more effective 
in extracting relevant topics from texts and docu-
ments. 

Several limitations of this study are also identi-
fied and discussed. First, the stop word removal 
process does not include domain-specific stop 
words. Second, the hyperparameter tuning pro-
cess in the second experiment set only involves 
changing the number of topics to a limited range 
of values from 2 to 10 due to limited computa-
tional resources. Therefore, the future works of 
this study include collection of domain-specific 
stop words and exclude these stop words from the 
analysis and conducting a more thorough hy-
perparameter tuning process to identify the best 
topic model to extract information from Python 
questions posted on SO. 
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