
DOI: 10.6977/IJoSI.202109_6(5).0006

L. Y. Meng, S. Y. Yi, etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

55

A Text Analytics Approach to Study Python Questions

Posted on Stack Overflow

Lee Yong Meng, Soo Yin Yi, Gan Keng Hoon* and Nur-Hana Samsudin
 School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, MALAYSIA

* Corresponding author E-mail: khgan@usm.my
(Received July 13, 2021; Final version received 1 September 2021; Accepted 9 September 2021.)

Abstract

Stack Overflow (SO) is one of the largest discussion platforms for programmers to communicate their
ideas and thoughts related to various topics like software development and data analysis. Many program-
mers are actively contributing to this platform and discuss about Python programming language. To better
study the topics related to Python questions posted on the platform, a text analytics approach incorporating
text preprocessing steps and Latent Dirichlet Allocation (LDA) topic modelling algorithm is proposed. The
two main objectives of this study are: to discover and compare the topics of the questions about Python
programming language posted on SO from 2008 to 2016, and to analyze questions about Python program-
ming language with high votes posted on SO from 2008 to 2016 using topic modelling technique with a
suitable number of topics. From the study, we find that the topics of the Python questions posted on Stack
Overflow have gradually shifted towards those related to data modelling and analysis from 2008 to 2016.
Furthermore, the study also shows that a suitable number of topics using the topic modelling technique
yield a high coherence score concerning the topic model in use, which is important to extract more mean-
ingful topics from the collection of Python questions.

Keywords: Stack Overflow, text processing, text analytics, topic modelling.

1. Introduction

Stack Overflow (SO) is one of the largest open-
source software platforms for programmers to
ask and discuss programming questions. This
platform includes voting, badging and user repu-
tation systems to ensure that the questions and an-
swers posted on the platform are meaningful or
relevant to its users. Therefore, SO ecosystem en-
courages many programmers to not only help
each other solve their programming questions
voluntarily, but also to showcase their ability in
programming problem solving and seeking a bet-
ter job (Xu et al., 2020). Nevertheless, with its
rise in popularity, issues such as duplication of
questions (Wang et al., 2020) and the quality of
the answers in response to the questions on the
platform (Meldrum et al., 2020) greatly affect the
browsing experience by programmers when
searching for answers through this platform.

Many programming questions have been
posted on SO since its official launch in 2008.

These include questions related to different
programming languages such as C language, Py-
thon, Java, and R, to name a few. Specifically, Py-
thon and R are the two programming languages
most highly associated with the questions related
to data analysis posted on the platform. This is
reasonable because there are many existing li-
braries and packages useful for data analysis in
both Python and R. This kind of information,
which can be extracted using text analytics ap-
proaches, can serve for various usages. For exam-
ple, it can be used by the programming language
development team to identify the aspects of the
language that are most relevant to these topics so
that they can work on improving the language in
terms of syntax, features, and even documenta-
tions. Besides, it can also be used as a guideline
for the programming language course team to
identify the important topics to be covered in the
content of their courses to meet the requirements
of the learners.

Several recent studies have been conducted to
analyze the questions and answers (Q&A) about

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

56

computer programming and software develop-
ment posted on SO. These include several works
performed to extract and classify the topics of
discussion on SO related to mobile application
development for different platforms, such as An-
droid, iOS, and Window Phones (Ahmad et al.,
2019; Beyer et al., 2020; Fontão, et al., 2018). In
these studies, the analyses are performed without
splitting those discussions according to years to
discover the trend or to compare the change of the
topics discussed over several years. Furthermore,
it is also important to identify the important top-
ics from the questions of a selected programming
language on the platform that are most relevant to
the users. In this context, a relevant question
means any question posted on SO that receives
many votes from users who find it helpful for
them through the voting system implemented on
this platform.

In this study, a text analytics approach involv-
ing text preprocessing steps and topic modelling
algorithm will be used to analyze the questions
related to Python programming language posted
on SO. The two main objectives of this study are
listed below:

 To discover and analyze the topics of the
questions about Python programming language
posted on SO from 2008 to 2016 to identify and
compare the topics being discussed in each year.

 To analyze questions about Python program-
ming language with high votes posted on SO
from 2008 to 2016 using topic modelling tech-
nique with a suitable number of topics.

This paper is structured as follows: Section 2
discusses the related works, including the appli-
cation of topic modelling algorithms on SO and
other forums. Section 3 describes the proposed
solution to address the two main objectives of this
study, including the dataset description and pre-
processing steps, the text preprocessing steps,
and the topic modelling approach. Then, Section
4 presents the analysis of findings from the pro-
posed solution. Finally, Section 5 discusses the
work done and some limitations of this study and
Section 6 summarizes the key points discussed
throughout this paper.

2. Related Works

As a large open-source software platform, the
Q&A posted on SO contains a fruitful source of
information that can be studied and analyzed to
understand the topics being discussed by pro-
grammers from time to time. Text preprocessing
techniques and topic modelling algorithm such as

Latent Dirichlet Allocation (LDA) is used in sev-
eral recent works to study the textual data ex-
tracted from the Q&A available on SO for various
purposes. For example, LDA algorithm is utilized
by researchers to extract the topics of the ques-
tions related to various programming languages
for further analysis. The study by Ali and Lin-
stead (2020) focuses on several programming
languages such as Python, JavaScript, C++, and
R to word cloud discover the topics related to
these programming languages that have been ex-
hausted for 10 years. Topic exhaustion is a term
describing the occurrence where the number of
questions related to a topic posted on SO de-
creases and it takes a longer waiting time to ob-
tain an answer for those questions over the years.
The study by Chakraborty et al. (2021) is con-
ducted to identify difficult topics for questions re-
lated to new programming languages such as Go,
Swift and Rust posted on SO. It is found that top-
ics related to “data” and “data structure” are dif-
ficult topics regardless of programming lan-
guages. Another study is conducted using the
LDA algorithm by Marçal et al. (2020) to identify
skill gaps between college and workspace by an-
alyzing topics of the questions related to Com-
puter Science posted on SO.

Topic modelling techniques are also used by re-
searchers to analyze the topics of discussions on
different Q&A websites. Stack Exchange, being
a network of multiple online Q&A websites in a
vast variety of fields (including SO – the main
Q&A website under Stack Exchange dedicated
for programmers), is often the choice of many re-
searchers to analyze the trends of popular topics
being discussed among communities in different
fields. For example, the threads from Data Sci-
ence Stack Exchange (and Reddit) are analyzed
using the LDA algorithm by Karbasian and Johri
(2020) to identify not only the important Data
Science topics and useful examples relevant for
teaching Data Science courses, but also various
topics related to professional developments. On
the other hand, the LDA algorithm is used by
Tamla et al. (2019) to identify the thoughts and
needs of serious games (SG) developers from
their discussions on GameDev Stack Exchange.

On top of that, the LDA algorithm is also com-
monly used for topic extraction of different fields
in several other online forums and social media
networks. A combination of Twitter and Reddit
datasets are used by Curiskis et al. (2020) to ex-
tract the topics being discussed by users in online
social networks (OSNs) using the LDA topic
modelling algorithm. Besides, the LDA topic
modelling algorithm is used to analyze the con-

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

57

tent specific to eating disorder on Reddit (Moess-
ner et al., 2018) and to extract patient knowledge
through their narratives on a patient forum (Dirk-
son, et al., 2019), respectively. Another applica-
tion of the LDA topic modelling algorithm is pre-
sented by Jaworska and Nanda (2018) to examine
the change of topics over time in the large corpus
of corporate social responsibility (CSR) reports
from the oil sector. The analysis shows that the
popular topics of the CSR reports have shifted
from the topics related to “climate change” to
those related to “human rights”.

The works done by researchers using the topic
modelling approaches have opened the door for
countless possibilities for future studies to ana-
lyze texts from different Q&A websites and fo-
rums. In this study, the LDA topic modelling al-
gorithm is used to analyze Python questions
posted on SO in two ways: first, to identify and
compare the topics discussed by programmers on
the platform for different years; and second, to
extract the topics of the Python questions with
high votes on the platform.

3. Proposed Solution

To achieve the two objectives in this study, we
propose a text analytics solution that utilizes text
processing techniques and the LDA topic model-
ling algorithm to study and identify the topics of
the Python questions posted on SO from 2008 to
2016.

Fig. 1. Overall framework of the proposed solution.

There are two different experiment sets de-
signed to analyze these Python questions. In the
first experiment set, the selected Python ques-
tions are split into different groups according to
the creation year of these questions on the plat-
form. Then, the topic models are built for the re-
spective group of questions to extract the topics
of Python questions created in each year. Finally,
a comparison is made between topics extracted
from different groups of Python questions to in-
vestigate any changes in topics of Python ques-
tions posted on SO from 2008 to 2016. In the sec-
ond experiment set, the set of Python questions
receiving at least 4 votes from SO users from
2008 to 2016 are studied to identify the relevant
topics of Python questions among SO users. In
this experiment set, different numbers of topics,
k, are tested to identify the optimal k to build a
topic model, which covers different topics of the
Python questions receiving high votes on the plat-
form.

This study is conducted using the Python pro-
gramming language. Fig. 1 shows the overall
framework of the proposed solution. The descrip-
tion and preprocessing steps of the dataset used,
the text preprocessing steps, the topic modelling
techniques used for model building, and the
model evaluation used in the proposed solution

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

58

are more thoroughly discussed next in the follow-
ing subsections.

3.1 Dataset Description and Preprocessing

The dataset used in this study is the Python
questions dataset (Overflow, 2019) which can be
retrieved from the Kaggle website. This dataset
consists of three CSV files, namely: “An-
swers.csv”, “Questions.csv” and “Tags.csv”. For
this purpose, our work focuses on “Ques-
tions.csv”, the CSV file that stores 607,282 Py-
thon questions posted on SO from August 2008
to October 2016. Table 1. Data description of the
Python questions dataset.

 summarizes the details and descriptions of
each attribute in the Python questions dataset.

Table 1. Data description of the Python questions dataset.

Attribute

name
Attrib-

ute type
Attribute description

Id Categori-

cal

The unique identifier of Py-

thon questions posted on SO.

OwnerUserId Categori-

cal

The unique identifier of SO

users who post the Python

questions.

CreationDate Date and

time

The recorded date and time

at which the Python ques-

tions are posted SO.

Score Numeri-

cal

Total votes received by the

Python questions on SO.

Title Text A user-generated title for the

Python questions on SO.

Body Text Description of the Python

questions containing normal

text and code blocks, written

in HTML script.

Since SO is an English-only Q&A website ded-
icated to the global community, the texts used in
the Python questions dataset are very unlikely to
contain non-English words that are not under-
stood by SO users. In addition, SO users can
choose to downvote any questions which are not
posted in the English language. Therefore, no
special care is taken to filter out Python questions
not written in the English language from the da-
taset before the analysis.

In this study, the main source of textual data
used for the analysis comes from the “Body” at-
tribute. This is because the “Body” attribute con-
tains more detailed descriptions than the “Title”
attribute about the Python questions posted by SO
users. There are some questions with poorly de-
fined titles that do not describe the questions well,

such as “Introducing Python” and “Most possible
pairs”. Furthermore, the descriptions of the ques-
tions provided are usually complete English sen-
tences which can better represent the frequency
of each word being used in the written English
language. The data preprocessing steps, which
are crucial to ensure the quality and validity of
the data used to build the topic models, are con-
ducted at two different stages. The first stage is
conducted once on the original Python questions
dataset to reduce the amount of data and select
relevant features to be used for both experiment
sets. On the other hand, the data preprocessing
steps during the second stage are conducted spe-
cifically for each experiment sets by using differ-
ent attributes.

a) Data Preprocessing: Stage 1

During this stage, the “Id” and “OwnerUserId”
attributes are removed from the dataset because
these attributes do not help in our study to analyze
Python questions posted on SO. Next, Python
questions receiving negative scores (i.e., more
downvotes than upvotes) by SO users are also re-
moved from the dataset. Then, to prepare the data
for the first experiment set, a new attribute “Cre-
ationYear” is derived from the “CreationDate” at-
tribute from the dataset. This attribute stores only
the year when the Python questions are posted on
SO to enable the grouping of each question into
its respective year group. Finally, the selected at-
tributes of the Python questions dataset for fur-
ther analysis are “Score”, “Body” and “Crea-
tionYear”.

b) Data Preprocessing: Stage 2

For the first experiment set, the “CreationYear”
attribute is used to split the Python questions into
different groups according to the creation year of
each question. On the other hand, for the second
experiment set, Python questions with “Score”
below 4 are filtered out. After performing this
step, the number of Python questions used for fur-
ther analysis has reduced to only 74,195 ques-
tions, which is sufficient for the analysis in this
study.

3.2 Text Preprocessing

a) Text Preprocessing: Stage 1

During this stage, several text preprocessing
steps are used to prepare the textual data for both
experiment sets, including the removal of punc-
tuations, lowercasing the texts, and the removal
of code blocks. The first two steps: removing
punctuations and lowercasing the texts are crucial
to removing the unnecessary parts from the text

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

59

which can introduce noise to the analysis of the
Python questions.

Furthermore, special treatment is required to
preprocess the descriptions of the Python ques-
tions stored in the “Body” attribute due to several
reasons. First, the descriptions of the Python
questions are written in HTML script, for in-
stance, each paragraph is enclosed within “<p>”
and “</p>” tag pairs. Second, including source
code of Python or any programming language in
the descriptions of the Python questions (en-
closed within “<code>” and “</code>” HTML
tag pairs) will certainly affect the result of the
analysis in this study. Therefore, steps are taken
to first remove the source code from the descrip-
tions. Then, the descriptions of the Python ques-
tions are transformed from HTML script to nor-
mal English text without HTML tags. This whole
process is performed using the BeautifulSoup li-
brary from the bs4 module in Python.

b) Text Preprocessing: Stage 2

The text preprocessing steps performed during
this stage are a series of steps within a text nor-
malization pipeline. In a text normalization pipe-
line, all the texts are converted from human-read-
able texts, including slang words and informal
texts, into their corresponding machine-readable
forms (Rahate and Chandak, 2019). The steps in-
cluded in this pipeline are word tokenization, stop
words removal and lemmatization. In natural lan-
guage processing (NLP), tokenization is defined
as the task to split a stream of characters into
words and punctuations. More specifically, there
are two types of tokenization methods used in
NLP, which are word tokenization and sentences
tokenization. Word tokenization is used to sepa-
rate words via unique space character whereas
sentences tokenization is used to perform tokeni-
zation based on sentence boundaries and one of
the examples is punctuations. In this study, word
tokenization is the method performed to split the
words in the description of each Python question
into individual units of words or tokens. In Py-
thon, word tokenization is performed using “sim-
ple_preprocess” utility functions implemented in
the Gensim library.

Another text preprocessing step is stop word re-
moval. In NLP, stops words or noise words are
the words that contain little information that is
not required in the analysis process (Kaur and
Buttar, 2018). Therefore, stop words are often re-
moved from the text corpus to improve the effi-
ciency with little influence on the results of NLP
tasks. Stop words are usually the most common
words in a language. Some stop words in the Eng-
lish language are “I”, “am”, “is”, “are”, “this” and

“that”. In this study, the stop words removed from
the list of tokenized words are English stop words
listed in the NLTK library in Python.

Finally, lemmatization is the technique used to
complete the text normalization pipeline. Lem-
matization is performed to convert the tokenized
words into their base form or dictionary form. For
example, the words “use”, “used”, “uses” and
“using” are all conjugated verbs that are derived
from and will be converted to their base form
“use” after lemmatization. One benefit of per-
forming lemmatization is that it helps reduce the
impact of inflection on English words, such as
treating derived words in a text corpus as differ-
ent words, to the results generated by the NLP
models. The lemmatization in Python is per-
formed with the core English language model us-
ing the SpaCy library, a popular NLP library
along with NLTK.

3.3 Model Building

Topic modelling is one of the applications in
text analytics used for studying and identifying
the underlying key topics of texts and documents,
which are often referred to as the combination of
different topics (Curiskis et al., 2020). In simple
terms, the goal of a topic modelling task is to ex-
tract different “topics” hidden within the given
texts and documents through a topic model. A
topic model is a generative model driven by the
probability framework to help identify such top-
ics. In general, a topic is associated with different
words and phrases from the texts and documents
that tend to occur together. In other words, similar
words or phrases tend to be grouped within the
same topic.

One of the popular algorithms used in topic
modelling is the Latent Dirichlet Allocation
(LDA) model. LDA works by assuming that there
is a mixture of different topics within the texts
and documents (Alghamdi and Alfalqi, 2015).
There is a probability distributed over each topic,
measuring the likelihood that a word appears in
each topic. LDA algorithm then assigns these
words to the topic based on the probability that
these words appear in the corresponding topics.
In the end, the list of the most probable words in
each topic indicates the context of the topics. In
this study, the LDA model is built using the Gen-
sim library in Python.

3.4 Model Evaluation

Due to its unsupervised nature, a topic model-
ling task is often used for exploratory analysis.
The dataset is not split into training and test da-
taset during the topic model building process.

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

60

Therefore, the challenge in evaluating the model
performance of a topic modelling task is similar
to those unsupervised learning tasks, in which,
there is no ground truth label used for evaluating
the performance of a topic model. This is differ-
ent from another text analytics task called topic
classification, which is supervised learning tasks.

In this study, two approaches are used to eval-
uate the topics generated for each topic model,
namely: the inspection using word cloud and co-
herence score. Evaluation by inspecting the word
cloud of each topic is treated as an informal ap-
proach, whereas the coherence score, which re-
lates to the computation of the similarity of words
within each topic, is a formal approach to evalu-
ate the performance of a topic model.

a) Word Cloud

Word cloud is a visual representation that cap-
tures and displays a list of words from a docu-
ment, which means a “bag of words”, and their
corresponding frequencies. Visually speaking,
the more frequent a word appears in the docu-
ment, the bigger the size of the word in the word
cloud. In this context, we treat each topic as a
document, in which, the frequency of each word
in the word cloud is simply the probability that
the word appears in that topic. With this conven-
tion, we can visually study the list of most com-
mon words that appear in topics generated by the
topic models. In Python, word clouds can be gen-
erated using the “wordcloud” library.

The advantages of using word clouds to visu-
ally represent the topics generated are, it is intui-
tive and engaging. Humans are visual creatures,
in such, there is a region in the human brain spe-
cialized for processing visual elements. There-
fore, the information delivered through a word
cloud can be easily perceived by humans in gen-
eral. However, the application of word cloud to
evaluate the performance of a topic model could
be subjective. This means different people might
perceive the word cloud differently due to the dif-
ferences in expertise and cognitive ability among
different people. Therefore, word cloud is used as
an informal approach to evaluate the performance
of a topic model.

b) Coherence Score

Another approach that can be used to evaluate
the performance of a topic model is by measuring
the coherence score of a topic. Coherence score,
which is also referred to as the topic coherence
measures, is obtained by computing the similari-
ties of most probable words in each topic seman-
tically (Röder et al., 2015). A high coherence

score implies that there is a high degree of simi-
larities among words within the same topic, and
thus the topic is said to be more coherent. There-
fore, the words are more associated with each
other, which implies that the topic is relevant and
not merely because the same words appear to be
the high scoring words across different topics.

The coherence score for one topic can be cal-
culated using the following formula, Eq. 1:

'V71& � ∑ '63u;R , ;vwRxv (1)

where vi and vj are two words in the selected
topic such that i and j are both integer values not
more than the total number of words in the topic,
and sim(vi,vj) is the similarity function used to
calculate the word similarity between vi and vj.
After obtaining the coherence score for each topic,
the coherence score for the topic model is calcu-
lated by taking the average value of the coherence
scores for all topics generated by the topic model.

A model performance evaluated using numeri-
cal measures is often perceived as a more formal
approach. Therefore, it is used for our purpose of
evaluating the performance of the topic models in
our proposed solution. In Python, the coherence
score can be calculated by calling the “get_coher-
ence” method of an instance of “Coherence-
Model” object in the Gensim library. The “coher-
ence” and “topn” parameters are set to their de-
fault values, “c_v” and “20” respectively.

4. Analysis of Findings

a) Experiment 1: Comparing the topics of
Python questions in different years

The number of topics, J must be specified

before building topic models using LDA algo-

rithms. In this case, we choose J � 5 for the first
experiment set to identify the 5 topics hidden
within the descriptions of Python questions for dif-
ferent years. These coherence scores of the topic
models from 2008 to 2016 are plotted in a bar chart
in 錯誤! 找不到參照來源。.

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

61

Fig. 2. Bar chart showing the coherence scores for topic
models from 2008 to 2016.

From Fig. 2, the coherent score of the topics ex-
tracted from the Python questions in 2008 is the
lowest among the scores of those in other years.
This might be because the data only contains the
Python questions posted in SO from August to
December 2008. Therefore, the coherence score
of the topics in 2018 might be susceptible to un-
desirable behaviour such as noise and scarcity in
the textual data. The word clouds for each topic
of Python questions posted on three selected
years: 2008 (the first year), 2013 (the year with
the highest coherence score) and 2016 (the last
year), are shown in Fig. 3, 4 and 5 respectively.

Fig. 3. Word clouds for topics extracted from Python
questions in 2008.

Fig. 4. Word clouds for topics extracted from Python
questions in 2013.

Fig. 5. Word clouds for topics extracted from Python
questions in 2016.

By visually inspecting each word cloud gener-
ated from the extracted topics within the same
year, the same words might appear multiple times
in different topics extracted from the topic model.
For example, in 2008 (see 錯誤! 找不到參照來

源。), the words “file” and “way” appear as words
with high probability score in three of the ex-
tracted topics. In 2016 (see Fig. 5), two of the
words: “try” and “code”, are also common words
in at least three extracted topics in that year. This
implies that the topics extracted from the Python
questions posted on SO within one year are quite
similar to each other, even though the list of high
scoring words in each topic might differ slightly
from one topic to another.

Comparing the topics extracted from the Py-
thon questions across different years, there is a

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

62

gradual shift towards the keywords such as “ta-
ble”, “datum”, “row” and “column” from 2008 to
2016. These words are not among the high score
words in any topics extracted in 2008. This shift
might be due to the emergence of Python as an
important programming language mainly used by
software engineers or data scientists to perform
their daily tasks involving transforming and pre-
processing data stored in table format. On the
other hand, words such as “write” and “import”
only appear as high score words in one of the top-
ics in 2008. This could imply that the questions
related to importing libraries and writing files
have been resolved in earlier days. Users might
have already gathered enough information from
earlier questions to solve similar problems with-
out having to post new questions to the platform.
Therefore, it can be said that there is no one-to-
one correspondence between the topics extracted
from one year to another because some topics in
the past might not stay relevant today and they
might eventually be replaced by newer topics in
later years.

Finally, the word “use” seems to have a high
probability score in all the topics extracted from
Python questions for any given year. Therefore,
the word “use” might be one of the domain-spe-
cific stop words which should be removed from
the texts and documents. Table 2. List of high scor-
ing words for each topic extracted from Python ques-
tions in 2008, 2013 and 2016.

 summarizes the topics extracted from Python
questions in 2008, 2013 and 2016, their most
probable labels and the corresponding words in
each topic. Note that the word “use” is removed
from the lists in the table because it appears as
one of the six words with the highest probability
score in all topics from different years.

b) Experiment 2: Showing the topic for ques-
tion with high scores

First, a baseline topic model is first built by us-
ing the LDA algorithm, with the number of topics,
k= 5 specified. The topic model with 5 topics is
chosen as the baseline model because we have
also set the number of topics, k = 5 for all topic
models in the first experiment set. The results
from the first experiment set show that topic
models with number of topics, k = 5 can generate
good results in this study. However, it is also im-
portant to test different number of topics which
yields the best model performance measured by
the coherence score. Therefore, a hyperparameter
tuning procedure is performed to search for the
optimal value of k from a list of numbers from 2
to 10. The coherence scores for each topic model

with the different number of topics are plotted in
a bar chart in Fig. 6.

Table 2. List of high scoring words for each topic ex-

tracted from Python questions in 2008, 2013 and 2016.

Year Topic Label Words

2008 #0 Python syntax List, way, would, func-

tion, want, string

#1 Server appli-

cation

Thread, run, file, email,

server, application

#2 File I/O, im-

port

Code, file, would,

write, import, script

#3 Other Would, way, try, work,

make, need

#4 File applica-

tion

File, work, want, try,

way. run

2013 #0 File applica-

tion

File, try, code, error,

line, get

#1 Functional,

object-ori-

ented

Function, class, object,

would, way, call

#2 Server appli-

cation

Run, try, work, error,

script, server

#3 List, Array List, value, number,

would, want, way

#4 Data model,

table form

User, page, try, model,

table, get

2016 #0 File applica-

tion

File, error, try, run,

work, get

#1 Server appli-

cation

Work, try, code, run,

server, get

#2 Plotting data Image, code, datum, try,

would, plot

#3 Python Syntax List, function, code,

value, want, try

#4 Data model,

table form

Column, row, datum,

want, table, value

Figure 6 shows that J = 8 yields the best
topic model with the highest coherence score of
0.4482. Therefore, another topic model is built by
using the LDA algorithm with the number of topics,
J = 8 specified. The word clouds for each topic of
Python questions with a high number of upvotes
for topic models with 5 and 8 topics are shown in
Fig. 7 and Fig. 8 respectively.

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

63

Fig. 6. Bar chart showing the coherence scores for topic
models from 2008 to 2016.

By comparing the two sets of word clouds in
Fig. 7 and 8 respectively, it can be observed that
some of the topics relevant to the Python program-
mers are not significant in the baseline topic model.
For example, topics related to “import” and “col-
umn” are not significant in extracted topics of the
baseline topic model. These two words do not have
their topics. Instead, they can be found in some
other topics extracted using the same model. On
the other hand, the words “import” and “column”
are among the highest-scoring words in Topic #4
in Topic #5 respectively, extracted using the best
topic model. The associated words in Topic #4 in-
clude: “file”, “instal” and “package”, indicating
that this topic is related to the installation and im-
porting of Python packages. Whereas in Topic #5,
the associated high scoring words include:
“model”, “datum”, “row” and “table”, which might
be a topic related to the data analysis: data model
or data stored in table forms.

Fig. 7. Word clouds for topics extracted from Python

questions with a high score using the best topic model –

topic model with 5 topics.

Fig. 8. Word clouds for topics extracted from Python
questions with a high score using baseline topic model

– topic model with 8 topics.

It is also observed that the high scoring words
within the topics extracted using the best topic
model (k = 8, which has a higher coherence score)
are more associated with each other, as compared
to those extracted using the baseline topic model
(k = 5, with a lower coherence score). The list of
topics extracted from both topic models, the most
probable labels and the corresponding words of
each topic are summarized in Table 3. Again, the
word “use” that appear in all the topics is re-
moved from the list of words in this table.

5. Discussions

Based on the experiment sets, it is shown that
topic modelling is useful in extracting the topics
from the description of the Python questions
posted on SO. The topics are also manually la-
belled according to the high scoring words within
each topic. In this section, we will discuss some
improvements which can be performed on the
study when extracting the information from the
description of the Python questions with our topic
modelling approach.

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

64

Table 3. List of topics extracted from the baseline and
the best topic models, the most probable labels and the

corresponding words for each topic.
Model Topic Label Words

Base-

line

#0 Functional,

object-ori-

ented

function, class, ob-

ject, call, method,

code

#1 List, array List, value, would,

way, want, number

#2 Text, string File, line, string, try,

code, plot

#3 Python

script

Run, try, error, work,

get, script

#4 Others User, image, model,

try, get, page

Best #0 Functional,

object-ori-

ented

Function, class, ob-

ject, call, method, re-

turn

#1 List, array List, value, would,

way, number, want

#2 File I/O File, string, line, text,

read, want

#3 Server ap-

plication

Server, request, pro-

cess, run, time, test

#4 Package im-

port and in-

stallation

File, import, package,

instal, try, version

#5 Data model,

table form

Column, model, user,

want, row, create

#6 Handling er-

ror

Error, try, get, code,

work, follow

#7 Python

script and

command

Run, script, program,

command, window,

work

First, during the text preprocessing steps, only
the most common English stop words are re-
moved. That means, the stop word removal only
handles the most frequent words in general Eng-
lish language such as “a”, “the”, “I”, “me”, “by”
and “was”. There is no additional step performed
to collect the domain-specific stop words before
performing stop word removal. Therefore, the ex-
periment results might be influenced by these
words to a certain degree. For example, the word
“use” that appears as the high scoring words in
every topic might be a domain-specific stop word.

Second, the hyperparameter tuning process in
the second experiment set only involves changing
the number of topics to a limited range of values
(from 2 to 10) to obtain the best topic model. With
this, there is a high chance that some better topic
models (which might yield even higher topic co-
herence score using the same dataset) are missed
out. However, by adding more hyperparameters,
the computational resources required to complete

the hyperparameter tuning process will increase
exponentially.

The future works include efforts to collect do-
main-specific stop words and exclude them from
the analysis of the Python questions posted on SO.
Besides, a more thorough hyperparameter tuning
process can be performed over a wider range of
number of topics (say up to 50 topics), or by in-
cluding more hyperparameters to the process to
search for the model settings that yield the best
topic model to the dataset. On top of that, this so-
lution can be adapted to perform text analytics on
the questions of other programming languages
posted on SO, such as R, C++ and Java.

6. Conclusion

In this study, we apply topic modelling, a text
analytics approach to study the Python questions
posted on SO from 2008 to 2016. Specifically, we
study the description of these questions because
the description contains more semantic infor-
mation than the title of these questions. Due to the
unstructured nature of textual data, we perform a
series of text preprocessing steps on the descrip-
tions of the Python questions such as removing
punctuations and changing the texts into lower-
case, transforming the HTML script to normal
text, tokenization, stop word removal and lemma-
tization. Then, two experiment sets are performed
on the preprocessed texts. First, the questions are
grouped into years and then a topic model is built
for each group using the LDA algorithm. The ex-
tracted topics are then compared across different
years to identify the trend and changing topics of
questions over years. Second, the questions with
a score of at least 4 are used to build another topic
model to identify the topics that cover these ques-
tions. In both experiment sets, the evaluation cri-
teria used are the inspection through the word
clouds (informal approach) and the computation
of the coherence score of each topic model (for-
mal approach).

Through the results obtained from the first ex-
periment set, it is observed that there is a gradual
shift to the topics of the Python questions posted
on SO from 2008 to 2016. The topic about the
data model and table becomes more prominent
over the years. For example, there is one topic
with keywords such as “table”, “datum”, “row”
and “column” generated by the topic model in
2016. These keywords are not significant in any
topics generated by the topic models from earlier
years. At the same time, the topic with keywords
related to file input and output such as “code”,

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

65

“file”, “import” and “script” become less signifi-
cant over the years.

On the other hand, the results obtained from the
second experiment set shows that a suitable num-
ber of topics to the topic model built using the
LDA algorithm yields extraction of more mean-
ingful topics from Python questions with high
votes posted on SO. In this study, the topic model
with k = 8 yields the highest coherence score. The
topics related to Python package installation and
importing, and data models are more prominent
in this topic model as compared to the baseline
model in this experiment set (k = 5) with a lower
coherence score. Therefore, the topic model with
the right number of topics that yields a higher co-
herence score, the topic model is more effective
in extracting relevant topics from texts and docu-
ments.

Several limitations of this study are also identi-
fied and discussed. First, the stop word removal
process does not include domain-specific stop
words. Second, the hyperparameter tuning pro-
cess in the second experiment set only involves
changing the number of topics to a limited range
of values from 2 to 10 due to limited computa-
tional resources. Therefore, the future works of
this study include collection of domain-specific
stop words and exclude these stop words from the
analysis and conducting a more thorough hy-
perparameter tuning process to identify the best
topic model to extract information from Python
questions posted on SO.

References

Ahmad, A., Feng, C., Li, K., Asim, S. M., &
Sun, T. (2019). Toward empirically investi-
gating non-functional requirements of iOS
developers on stack overflow. IEEE Access,
7, 61145–61169.

Alghamdi, R., & Alfalqi, K. (2015). A survey of
topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl.(IJACSA), 6.

Ali, R. H., & Linstead, E. (2020). Modeling
Topic Exhaustion for Programming Lan-
guages on StackOverflow. SEKE, (pp. 400–
405).

Beyer, S., Macho, C., Di Penta, M., & Pinzger,
M. (2020). What kind of questions do devel-
opers ask on Stack Overflow? A comparison
of automated approaches to classify posts
into question categories. Empirical Software
Engineering, 25, 2258–2301.

Chakraborty, P., Shahriyar, R., Iqbal, A., & Ud-
din, G. (2021). How do developers discuss
and support new programming languages in
technical Q&A site? An empirical study of
Go, Swift, and Rust in Stack Overflow. In-
formation and Software Technology, 137,
106603.

Curiskis, S. A., Drake, B., Osborn, T. R., & Ken-
nedy, P. J. (2020). An evaluation of docu-
ment clustering and topic modelling in two
online social networks: Twitter and Reddit.
Information Processing & Management, 57,
102034.

Dirkson, A. R., Verberne, S., Kraaij, W., Jorge,
A. M., Campos, R., Jatowt, A., & Bhatia, S.
(2019). Narrative detection in online patient
communities. Proceedings of Text2Story—
Second Workshop on Narrative Extraction
From Texts co-located with 41th European
Conference on Information Retrieval (ECIR
2019), (pp. 21–28).

Fontão, A., Ábia, B., Wiese, I., Estácio, B.,
Quinta, M., dos Santos, R. P., & Dias-Neto,
A. C. (2018). Supporting governance of mo-
bile application developers from mining and
analyzing technical questions in stack over-
flow. Journal of Software Engineering Re-
search and Development, 6, 1–34.

Jaworska, S., & Nanda, A. (2018). Doing well
by talking good: A topic modelling-assisted
discourse study of corporate social responsi-
bility. Applied Linguistics, 39, 373–399.

Karbasian, H., & Johri, A. (2020). Insights for
curriculum development: Identifying emerg-
ing data science topics through analysis of
Q&A communities. Proceedings of the 51st
ACM Technical Symposium on Computer
Science Education, (pp. 192–198).

Kaur, J., & Buttar, P. K. (2018). A systematic re-
view on stopword removal algorithms. Inter-
national Journal on Future Revolution in
Computer Science & Communication Engi-
neering, 4, 207–210.

Marçal, I., Garcia, R. E., Eler, D., & Correia, R.
C. (2020). A Strategy to Enhance Computer
Science Teaching Material Using Topic
Modelling: Towards Overcoming The Gap
Between College And Workplace Skills. Pro-

L. Y. Meng, S. Y. Yi,etc/ Int. J. Systematic Innovation, 6(5), 55-66 (2021)

http://www.IJoSI.org

66

ceedings of the 51st ACM Technical Sympo-
sium on Computer Science Education, (pp.
366–371).

Meldrum, S., Licorish, S. A., Owen, C. A., &
Savarimuthu, B. T. (2020). Understanding
stack overflow code quality: A recommenda-
tion of caution. Science of Computer Pro-
gramming, 199, 102516.

Moessner, M., Feldhege, J., Wolf, M., & Bauer,
S. (2018). Analyzing big data in social me-
dia: Text and network analyses of an eating
disorder forum. International Journal of Eat-
ing Disorders, 51, 656–667.

Overflow, S. (2019, 10). Python Questions from
Stack Overflow. Python Questions from
Stack Overflow. Retrieved from
https://www.kaggle.com/stackoverflow/py-
thonquestions

Rahate, P. M., & Chandak, M. (2019). Text Nor-
malization and Its Role in Speech Synthesis.
International Journal of Engineering and Ad-
vanced Technology Special Issue, 8, 115–
122. doi:10.35940/ijeat.e1029.0785s319

Röder, M., Both, A., & Hinneburg, A. (2015).
Exploring the space of topic coherence
measures. Proceedings of the eighth ACM
international conference on Web search and
data mining, (pp. 399–408).

Tamla, P., Böhm, T., Nawroth, C., Hemmje, M.,
& Fuchs, M. (2019). What Do Serious
Games Developers Search Online? A Study
of GameDev StackExchange. CERC, (pp.
131–142).

Wang, L., Zhang, L., & Jiang, J. (2020). Dupli-
cate question detection with deep learning in
stack overflow. IEEE Access, 8, 25964–
25975.

Xu, L., Nian, T., & Cabral, L. (2020). What
makes geeks tick? a study of stack overflow
careers. Management Science, 66, 587–604.

AUTHOR BIOGRAPHIES

Lee Yong Meng is currently pur-
suing his Master’s degree in Data
Science and Analytics from the
School of Computer Sciences,
Universiti Sains Malaysia (USM).

He received his B.App.Sc. degree in mathematical

modelling from the School of Mathematical Sci-
ences, USM in 2016. He is also a Graduate Tech-
nologist with the Malaysia Board of Technologists
(MBOT).

Soo Yin Yi is a postgrad student
who is currently pursuing Master
Data Science and Analysis at Uni-
versiti Sains Malaysia. He is cur-
rently working as a Data Analyst

in Keysight Tecnologies. He also holds a Bachelor
Degree in Logistics from Universiti Utara Malay-
sia.

Gan Keng Hoon is a senior lec-
turer in School of Computer Sci-
ences, Universiti Sains Malaysia.
She received her Ph. D. degree
from Universiti of Malaya (UM)

in 2013. She is current the Program Manager of
Research Ecosystem and Innovation at the School
of Compter Sciences. Her domains of specializa-
tion include information retrieval, structured re-
trieval, structured document representation and
query optimization. She has initiated a research
platform SIIR (Semantics in Information Retrieval
@ ir.cs.usm.my) which is a research initiative re-
lated to semantically enhanced information re-
trieval, and its related applications.

Nur-Hana Samsudin was born in
Kuala Lumpur, Malaysia. She re-
ceived her Ph.D. degree in Com-
puter Science from University of
Birmingham, United Kingdom in

2017. Currently she is a Senior Lecturer at Univer-
siti Sains Malaysia in Penang Malaysia. She cur-
rently holds one patent and one copyright besides
producing research paper since her Master studies.
Her interest covers in Natural Language Pro-
cessing, Speech Processing, sustainable under-re-
sourced language studies and polyglot speech syn-
thesis.

