
 DOI: 10.6977/IJoSI.202206_7(2).0004

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

 48

Towards the development of a recommender system for product de-

livery using graph databases and related algorithms

ZAIKER Nassima1, LAMGHARI Zineb2

1 ETIS Laboratory, cy-tech Engineering School, CY-CERGY University in Paris, France

2 LRIT associated unit to CNRST (URAC 29), Rabat IT Center, Faculty of Sciences,

Mohammed V University in Rabat, Morocco

zaikernass@cy-tech.fr, zineb_lamghari2@um5.ac.ma

(Received 6 January 2022; final version received 21 March 2022; accepted 21 March 2021)

Abstract

Recommendation systems are among the promising strands of machine learning that have revolutionized in-

formation retrieval operations. These systems are designed to make recommendations to users based on dif-

ferent factors.

The realization of a recommender system requires a study of the users’ needs and the metrics that may influ-

ence each recommendation, as well as the attributes that can be entered into the application but that have no

effect on the system's functioning.

In this context, SoftCentre1 aims to develop a delivery recommender system using graph databases and relat-

ed algorithms, in order to figure out the best path for each delivery to its destination. In this context, the deliv-

erer will respect deadlines, specifications, and deduce the best itinerary to travel on.

Therefore, our project revolves around the design, modeling, and implementation of a recommendation sys-

tem based on these main phases: 1)Data collection and preprocessing, 2)Graph database creation, and

3)Applying recommendation and optimization algorithms.

Keywords: Recommendation system, process model, Hybrid filtering, Graph database, Neo4j, Cypher, Python

1 organization that creates national champions in the software industry to improve Morocco's international attrac-

tiveness

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

49

1. Introduction

There are many mobile (Jumia, Food on Demand,

Glovo, etc.) or desktop applications (El Morocco Club,

Best Restaurants, etc.) that present a wide choice of

restaurants, menus, meals, and best places to visit, as

well as suggest delivery services according to the cus-

tomer's profile, his budget, his preferences, and his

current geographical location. However, as a deliver-

yman, there is no system that considers orders' pref-

erences and availability, especially for independent

delivery people who have to do auto-orders. This ran-

dom process makes the deliverer lose time in navi-

gating and selecting deliveries, as well as allows him

to make an unfavorable selection with incompatible

orders and deliver a minimum number of orders across

a very long route.

Thus, the current method has several limitations:

deliverers suffer during the search from information

overload due to published orders, publications on sev-

eral sites, waste of time, lack of user experience per-

sonalization, and are shocked by the fact that the

amount of information they are confronted with is

greater than their capacity to process it. Moreover,

they always wait for a user's request to recommend

references. Indeed, there is a lack of informational

data from deliverers and customers’ requests. In this

sense, general information provides a lack of adapta-

tion to the user’s interest in recommending and valu-

ing contents such as deliverer metadata, customer

metadata, descriptive information about orders, new

deliveries, and funds that have historical value.

From a technical point of view, a delivery referral

system is effective when it meets the needs of func-

tional requirements. The system must take into con-

sideration the delivery customer's evaluation and build

a user model from the collected data, relying on re-

al-time data (current geographic location). Also, it is

required to take into consideration non-functional re-

quirements.

The evaluation result aims to improve the per-

formance and quality of the functional requirements of

the recommended system. This is done by personaliz-

ing recommendations according to the deliverer pro-

file and availability of customer point of view as rec-

ommendations for any deliverer connected to the ap-

plication. In this sense, the deliverer has to respect

deadlines, specifications, and deduce the right itiner-

aries. Therefore, the deliverer has to respect the dead-

lines and specifications of each command and order

and propose the optimal delivery route. In this context,

we aim to create a recommender system that will work

as background of a mobile application. Thus, the focus

of this system is to provide real-time recommenda-

tions to each deliverer, about the best route path be-

tween two specific destinations, based on their geo-

graphical location, vehicle type, capacity, and availa-

bility, in order to reduce the total distance that will be

travelled/forwarded (the total cost). In addition, it is

rentable in terms of increasing the density of routes,

the size of the delivery points by grouping deliveries

according to location, proximity, delivery schedule,

and order specifications.

To resolve this problem, the key technology for

enabling real-time recommendations is the graph da-

tabase (Kamphuis, 2020), a technology that is quickly

leaving traditional relational databases behind. Graph

databases easily outperform relational and other

NoSQL databases in connecting masses of user and

product data (connected data in general) to better un-

derstand customer needs and product trends. The big-

gest advantage of using a graph data model is that

there is no need to connect entities within the data us-

ing special properties such as foreign keys. In a graph

database, it becomes very easy to understand relation-

ships between entities because the data structure is

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

50

well organized and very noticeable.

In this paper, we use Neo4j (Zhu et al., 2019),

which is a graph database management system that

also provides tools to visualize and extract important

information from the graph database. This is done

based on the Neo4j's graphical query language that

allows users to store and retrieve data from the graph-

ical database (Cypher).

Cypher (Francis et al., 2018) is not only the best

way to interact with data and Neo4j. Cypher's syntax

provides a visual and logical way to match patterns of

nodes and relationships in the graph, which allows

users to build expressive and efficient queries to han-

dle the necessary creation, reading, updating, and de-

leting functionality. Indeed, SoftCentre2 aims to de-

velop a delivery recommender system using graph

databases in order to optimize routes for each delivery

to its destination.

The reminder of this paper is organized as fol-

lows: The second section presents a literature back-

ground on existing recommender systems, techniques,

and algorithms. The third section presents our recom-

mended system architecture with an illustrative exam-

ple of its application. The fourth section summarizes

the paper and introduces future work.

2. Related Work

We will devote this section to presenting how the lit-

erature defines some key concepts and notions related

to our study. Thus, we will present how existing rec-

ommendation systems operate.

2 organization that creates national champions in the

software industry to improve Morocco's international

attractiveness

2.1 Techniques for recommendation

Recommendation or recommender systems

(Karimi et al., 2018) are algorithms that suggest rele-

vant elements (movies to watch, texts to read, products

to buy or any other element depending on the sector of

activity) to users.

All recommendation algorithms are based on the

following concepts:

These algorithms aim to find entities with similar

properties and calculate their "similarity" measure

(Prasetya et al., 2018). For example, customers who

live in the same area, have the same age, or share

common interests can be "grouped". This requires the

analysis of customer choices. Indeed, it is possible to

propose suitable recommendations by taking into con-

sideration the executed activities of two similar clients.

These two steps of the recommendation process depend

on logical links between customers and between cus-

tomers and their purchases. Therefore, the faster we

can query and traverse these links, the stronger our

ability to provide real-time recommendations is. In this

context, there are many techniques used to make a

recommendation system, which are illustrated in the

diagram of Figure 1.

Fig. 1. A summary of existing approaches to recom-

mendation systems

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

51

a. Content-based filtering technique

The content-based filtering technique (Bharti and

Gupta, 2019) is used to analyze a set of items that have

been evaluated previously by users in order to generate

a prediction based on their evaluation.

To generate a complete sense of recommendation,

different types of models will be used to find the simi-

larity between documents, such as vector space models,

probabilistic models, and neural networks. With this

technique, we do not need a user profile, as it has been

done using machine learning or statistical analysis.

The advantages of this technique are as follows: a) it

provides privacy, b) there is no need to share the user's

profile, c) recommendations are made in a short period

of time, and it can recommend new items even if there

is no rate on them.

On the other hand, it has disadvantages, namely: a)

content-based filtering depends on the metadata of the

item, and b) it is limited and requires a detailed de-

scription of the items.

b. Collaborative filtering technique

This technique (Nilashi et al., 2018) cannot be de-

scribed easily using metadata because it is a do-

main-independent prediction technique. This technique

is used to build a database between a user and an article

as a performance table for articles written by users.

Then it is required to calculate similarity by matching

users with relevant articles.

The item recommended to the user depends on how

similar users rate this article. In addition, this technique

has two types: 1) model-based filtering techniques,

which depends on clustering, association, Bayesian

network, and neural network techniques; and 2)

memory-based filtering technique like user-based and

item-based techniques. It also has some advantages,

such as the need for user evaluation to find similarity

between them for establishing recommendations; it

displays the recommendation items that an unknown

user likes or evaluates; a new item can be suggested

even if it has not been evaluated. On the other hand,

this method has a disadvantage for new users, where

recommendations will not be provided correctly, and

items will not be recommended if there is no infor-

mation to discriminate against.

c. Hybrid filtering technique

This technique (Parsian et al., 2017) is performed

by combining several techniques to avoid the systems’

limitations. Therefore, the result will be more accurate

than a single algorithm. Each technique has weakness-

es which can be overcome by combining them with

another technique.

There are different ways to match this combination,

such as implementing algorithms separately and then

combining the results. Thus, we can use the con-

tent-based filtering technique (Bharti and Gupta, 2019)

in the collaborative filtering approach and the collabo-

rative filtering technique (Nilashi et al., 2018) in the

content-based filtering approach.

2.2 Social media Recommendation systems

Currently, several recommendation systems are

based on graph databases. 1) hybrid video recommen-

dation system based on a graph-based algorithm

(Ö ztürk, 2010); 2) book recommendation using Neo4j

Graph Database in BibTeX Book Metadata (Dharma-

wan and Sarno, 2017); and 3) the Impact of the

YouTube Recommendation System on Video Views

(Zhou et al., 2010).

Firstly, the hybrid video recommendation system

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

52

(Ö ztürk, 2010) is based on a graph algorithm using a

graphical algorithm called Adsorption. Adsorption

(Raj et al., 2020) is a collaborative filtering algorithm

in which logical links between users are used to make

recommendations. Adsorption is used to generate the

basic recommendation list. To overcome problems that

have occurred in a collaborative system, content-based

filtering is injected. Content-based filtering uses the

idea of suggesting similar items that match the user's

preferences, and the recommendation list is updated

by removing weak recommendations. Then, similari-

ties between items in the remaining list are calculated,

and new items are inserted to form the final recom-

mendation. Thus, recommendations are strengthened

by considering the similarity algorithm between items.

Therefore, the developed hybrid system combines

both the collaborative approach and the content-based

approach, to produce more effective suggestions.

Secondly, book recommendations Using Neo4j

Graph Database in BibTeX Book Metadata (Dharma-

wan and Sarno, 2017) consists of processing the book

metadata so information can be displayed to the user

who needs a book recommendation. By combining

BibTeX book metadata with Neo4j's graphical data-

base, the data and metadata can be processed. Then,

with an encrypted query, by entering the author or

book type parameter, the user can get book recom-

mendations based on their input criteria.

The result is exactly the same as with manual

processing of metadata in the relational database. Ac-

cording to this article, it takes 180 milliseconds to run

a cypher query with author criteria, and 184 millisec-

onds to run a query with book type criteria.

Last, the YouTube Recommendation System on

Video Views (Zhou et al., 2010) presents a measure-

ment study on datasets from YouTube. We find that

related video recommendation, which recommend

videos that are related to the video a user is currently

watching, are one of the most important sources of

video views. Despite the fact that YouTube video

search is the top source of viewing in aggregation,

related video recommendations is the top source of

views for the majority of videos on YouTube (Lope-

zosa et al., 2020).

Furthermore, results reveal that there is a strong

correlation between the number of views a video has

and the average number of views of its most recom-

mended videos. This implies that a video is more

likely to become popular when it is placed on popular

video recommendation lists. We also find that the

click-through rate from a video to its related videos is

high, and that the position of a video in a list of related

videos plays a key role in the click-through rate. In-

deed, the evaluation of the impact of the related video

recommendation system on the diversity of video

views indicates that the current recommendation sys-

tem increases the diversity of video views in the ag-

gregation.

3. Our Proposed Delivery Recommender system

In this section, we will detail our recommended

system architecture, as well as the steps to follow in

realizing it.

Our recommender system uses both collaborative

filtering techniques and content-based recommenda-

tion (a hybrid recommender system). The collabora-

tive part is where a set of algorithms will be used. The

content-based technique is used to make recommenda-

tions in a short period of time, and it can recommend

new items even if there is no rate on them. Therefore,

our recommender system will be used to recommend

the optimal path for a deliverer to achieve its order

destination.

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

53

3.1 Framework

a. Overview

The system involves several actors, either directly

or indirectly. These different actors are:

Fig. 2. Use Case

The administrator intervenes in an indirect way,

by managing the system and by having the right to act

through numerous actions, defined as follows: Log in

and log out; Adding a user or an order (command),

updating the system information, or deleting specific

information. The user (the deliverer or delivery man):

this is the main actor in the system. He interacts

through the following actions: logging in, accessing

his account, or logging out; He can update his profile

information, search and view search results, as well as

receive delivery recommendations based on his pro-

file.

The diagram in Figure 2 models the use case of

the mobile application combined with our recom-

mended system for visualizing results.

b. Exemplar scenario

 Figure 3 presents a scenario that is defined by a

departure point and an arrival point. Throughout this

scenario, participants react to the system through sev-

eral actions. First, the driver must connect to the ap-

plication according to his detected geographical posi-

tion and the keywords of the search he makes. After-

wards, the system can propose deliveries that are in

turn defined by numerous metrics, namely the size, the

weight, the geographical points of pickup and destina-

tion, as well as the type of logical links between the

deliverer and the customer. This is based on the rating

that the deliverer gives to the customer. These static

and dynamic parameters (in real time) are the core of

our system, which affects the results of the recom-

mendation (Figure 3 shows this recommendation pro-

cess).

Fig. 3. Full Recommendation scenario with the parameters’ calculation sub-process

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

54

3.2 Data collection

Our system is part of a project that develops a

mobile application dedicated to independent delivery

drivers. The delivery requests are published on the

application and can be defined by data and metadata,

which belong to the description of each request. This

data is generated by the mobile application, and it will

be considered the input data (output) of our system, on

which the recommendation algorithms of our solution

are based.

Fig. 4. Generated database (tables: orders, deliverers, customers, and vehicles)

In our case, the project is under development,

which means that there is no data to be generated.

Therefore, the production of false (true) data is re-

quired for the realization of the first step of our solu-

tion. To that end, there are many existing databases on

the web that contain data that is compatible with our

solution. Kaggle3 is one of the platforms with rich and

varied content in the field of data science, and on

which there are different types of delivery request da-

3 https://www.kaggle.com

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

55

tabases to generate useful data from this platform.

 With the help of the Python packages, we can

easily resolve several problems with simple code. In

this step, we relied on the following two packages,

Beautifulsoup and Faker, to generate the rest of the

data, because we were not able to pull this data ac-

cording to the first scenario.

There are numerous platforms to generate data,

such as Mockaroo[2]. Mockaroo is a website that we

have used to generate realistic but entirely fake data. It

allows generating a wide variety of fake data from many

domains and with high volumes. Also, it can be used to

simulate the beta version of our API until the real APIs

are completed. All these methods are explored for the

data generation of a database that is made up of 4 tables

in CSV format (see Figure 4). The first table contains

information about orders (French: commandes), the

second table depicts information about deliverers

(French: livreurs), the third table contains information

about customers (French: clients), and the fourth table

contains information about vehicles (French: véhicules).

3.3 Data preparation

After database creation with specific metrics, we will

process these metrics to yield logical results by removing

noise.

Data preprocessing is a data mining technique that in-

volves transforming raw data into an understandable format.

Real-world data is often incomplete, inconsistent, and/or

lacking in certain behaviors or trends, and is prone to many

errors. Data preprocessing is a proven method to solve these

problems. To this end, we have based ourselves on four steps:

data cleaning, data integration, data reduction, and data

transformation (see Figure 6). For instance, the database con-

tains several missing values (see Figure 5). This data can

negatively influence the learning results. To solve this prob-

lem, we have to re-encode some of those missing values. To

do this, we have used imputation, which means replacing the

missing value with any number. In most cases, the imputed

value will not be exactly accurate, but it usually gives more

accurate models than dropping the column completely.

Fig. 5. Exploring missing values

3.4 Graph database

After processing the database and exporting it into

new CSV files, we proceed to create the graph database,

on which we will apply all the algorithms of the rec-

ommendation process. Then, we derive a graph model

from a relational model, and we have to apply the fol-

lowing guidelines: a row is a node; a table name is a

label name; and a join or foreign key is a logical link.

a. Nodes’ creation

To create the nodes of our graph database, we begin by

importing CSV files that contain the tables of the relational

database. The output of each script gives the number of nodes

created from the CSV file, the number of properties, and the

execution time. e.g., 13759 order nodes, 6521 customer nodes,

and 6880 deliverer nodes (see Figure 6).

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

56

Fig. 6. The process of creating a graph database

Fig. 7. Our graph database

b. Logical links and constraints creation

At this stage, we will create logical links between

different nodes to obtain the graph of our database. To

do this, we need to start by creating the indexes and the

constraints on the properties that will be the links be-

tween the nodes. To successfully create the relation-

ships, a constraint must be placed on the order identifi-

er, which must be unique.

The goal of our study is to recommend a set of de-

liveries to a deliveryman, so the first relations are, on

the one hand, those that link the orders with the cus-

tomers, and on the other hand, those between the de-

liverers and the vehicles.

The graphical representation of the database (see

Figure 7), based on the connections between the nodes,

is faster when dealing with large amounts of data, so it

is more efficient in the sense of searching for recom-

mendations based on the relationships that link the dif-

ferent entities in the database.

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

57

3.5 Implementation

After creating the graph database, it is time to ma-

nipulate its data using the algorithms of the Neo4j

Graph Data Science library (Needham and Hodler,

2019) as shown in Figure 8.

Fig. 8. The process of applying recommendation algorithms to the graph database

a. PageRank and Similarity Algorithm

The first step is to calculate the centrality of the order

nodes using the PageRank algorithm (Xing and Ali,

2005). This algorithm calculates a score for each node

and then displays them in order. This allows us to have

the most important nodes in the graph that influence

the rest of the algorithms. Then, we will calculate the

similarity between a node of a given supplier and the

properties of the orders using the node similarity algo-

rithm based on Jaccard Similarity (Niwattanakul et al.,

2013).

The configuration of this similarity considers the

mobility and availability properties of the deliverer

along with the mobility of the order. These algorithms

allow the filtering of orders that do not match the pro-

file of the deliverer, which will not be counted in the

selection of recommendations.

b. Route Path optimization

To recommend an action based on route optimization,

we need to select the orders closest to the location of

the deliverer. The path taken by the delivery will be as

shown in Figure 9. In order to optimize this path, we

need to calculate the distance between the current posi-

tion of the origin of the order as well as the distance

between the starting point of the order and the order's

point of departure and the point of arrival. To do this,

we will use the Neo4j spatial library (Ashokkumar

Arunkumar, et al. 2018).

First, we need to convert the geographic (see Figure

9) coordinates and create a point defined by the latitude

and longitude. These parameters are used to calculate

the distance between two geographical points, which

are the origin of the order and its destination. The same

calculation is applied to the distance between the de-

livery and the origin of the order.

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

58

Fig. 9. Deliverer route

After calculating the distances, we can apply the

shortest path algorithm (Gómez et al., 2019) to opti-

mize the route path (ALL Pairs Shortest Path Algo-

rithm). The result is illustrated as a ranking of the

shortest paths between a pair of nodes using the total

distance values between these aforementioned nodes.

Figure 10 shows the result obtained by applying the

shortest path algorithm to our database.

To define the closest orders to a given deliverer,

we used the Dijkstra Single algorithm (Permana et al.,

2018). This algorithm calculates the shortest paths be-

tween a source node, which is the delivery node in this

case, and all the nodes reachable from this node, which

are the orders. The application of this algorithm re-

quires the use of a fixed starting node, so that the result

can be represented as the distance between this node

and all other nodes.

After selecting the closest orders to the delivery

driver, we create a new group based on the nature and

content of each order. At this point, the delivery driver

can make multiple deliveries. To do that, we have used

the community detection algorithm, the LOUVAIN

algorithm (Zhang et al., 2021). This algorithm is used

to nominate groups that can classify general orders and

orders that belong to a specific group. The main idea

consists of using these groups to provide the set of

recommendations that will be displayed to the deliverer

(see Figure 11).

Fig. 10. Recommendation algorithms’ application (Page rank ①, Similarity ②, Distance ③)

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

59

Fig. 11. Optimization algorithms’ application (Shortest Paths ①, Dijkstra ② and Louvain③)

4. Conclusion

In this paper, a hybrid recommender system is

presented. The system uses both collaborative filtering

and content-based recommendation techniques. In this

context, we use a set of recommendation and optimiza-

tion algorithms. Therefore, our project revolves around

the design, modeling, and implementation of a recom-

mendation system based on the active filtering of orders

published in the discussed mobile application.

To that end, we collected a large volume of data to

create our relational database. Then, we converted the

resultant database to a graph database using Neo4j li-

braries. Also, we applied a set of algorithms dedicated to

data manipulation, which allowed us to generate rec-

ommendations for a given deliverer using Cypher and

Python libraries. Furthermore, this helps the system

personalize orders, contents, and deliveries by exploit-

ing connections between data -all in real time- and

matching deliverers with orders based on their profiles,

preferences, and past online activities. In this context,

we opt for a hybrid filtering approach that combines

several algorithms and techniques. Therefore, the result

is more accurate than a single algorithm.

In further work, it is important to treat the ability

of process mining techniques to model uncertain be-

haviors of self-defined processes related to information

retrieval systems. This is in line with the objective of

achieving business process maturity and measuring how

effectively and efficiently the self-defined BP is work-

ing.

Z. Nassima, L. Zineb / Int. J. Systematic Innovation, 7(2), 48-60 (2022)

60

References

Ashokkumar, P., Arunkumar, N., & Don, S. (2018).

Intelligent optimal route recommendation among

heterogeneous objects with keywords. Computers

& Electrical Engineering 68, 526-535.

Bharti, R. & Gupta, D. (2019). Recommending top N

movies using content-based filtering and collabora-

tive filtering with hadoop and hive framework. In :

Recent Developments in Machine Learning and

Data Analytics. Springer, Singapore, 109-118.

Dharmawan, I. N. P. W., & Sarno, R. (2017). Book

recommendation using Neo4j graph database in

BibTeX book metadata. In 2017 3rd International

Conference on Science in Information Technology

(ICSITech), 47-52. IEEE.

Francis, N., Green, A., Guagliardo, P., et al. (2018).

Cypher: An evolving query language for property

graphs, in the Proceedings of the 2018 International

Conference on Management of Data, 1433-1445.

Gómez, L. I., Kuijpers, B., & Vaisman, A.A. (2019).

Analytical queries on semantic trajectories using

graph databases. Transactions in GIS, 2, 5,

1078-1101.

Kamphuis, C. (2020). Graph databases for information

retrieval. Advances in Information Retrieval, 12036,

608.

Karimi, M., Jannach, D., & Jugovac, M. (2018). News

recommender systems–Survey and roads ahead.

Information Processing & Management, 54, 6,

1203-1227.

Lopezosa, C., Enrique O., & Mario P. (2020). Making

video news visible: Identifying the optimization

strategies of the cybermedia on YouTube using web

metrics. Journalism practice, 14, 4, 465-482

Needham, M. & Hodler, A.E. (2019). Graph Algo-

rithms: Practical Examples in Apache Spark and

Neo4j. O'Reilly Media.

Nilashi, M., Ibrahim, O., & Bagherifard, K. (2018). A

recommender system based on collaborative filter-

ing using ontology and dimensionality reduction

techniques. Expert Systems with Applications, 92,

507-520.

Niwattanakul, S., et al. (2013). Using of Jaccard coef-

ficient for keywords similarity. Proceedings of the

international multiconference of engineers and

computer scientists, 1, 6.

Ö ztürk, G. (2010). A hybrid video recommendation

system based on a graph-based algorithm. MS the-

sis.

Parsian, A., Ramezani, M., & Ghadimi, N. (2017). A

hybrid neural network-gray wolf optimization algo-

rithm for melanoma detection. Biomedical Re-

search, 28, 8.

Permana, S.H., et al. (2018). Comparative analysis of

pathfinding algorithms a*, dijkstra, and bfs on maze

runner game. IJISTECH (International J. Inf. Syst.

Technol, 1, 2, 1.

Prasetya, D.D., Wibawa, A., & Hirashima, T. (2018).

The performance of text similarity algorithms. In-

ternational Journal of Advances in Intelligent In-

formatics, 4, 1, 63-69.

Raj, J., Amirul, H., & Ashim, S. (2020). Various

Methodologies for Micro-Video Recommendation

System: A Survey.

Xing, W., & Ali, G. (2005). Weighted pagerank algo-

rithm. Proceedings. Second Annual Conference on

Communication Networks and Services Research,

IEEE.

Zhang, J., et al. (2021). An Improved Louvain Algo-

rithm for Community Detection. Mathematical

Problems in Engineering 2021.

Zhou, R., Khemmarat, S. & Gao, L. (2010). The impact

of YouTube recommendation system on video

views. Proceedings of the ACM SIGCOMM Inter-

net Measurement Conference, IMC. 404-410.

10.1145/1879141.1879193.

Zhu, Z., Zhou, X., & Shao, K. (2019). A novel ap-

proach based on Neo4j for multi-constrained flexi-

ble job shop scheduling problem. Computers & In-

dustrial Engineering, 130, 671-686.

