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Abstract 

Cotton is one of the economically significant agricultural products in the world and is among the key export resources 

in Pakistan. Despite the significant pest control techniques and mechanisms, the cotton crop is highly prone to bacterial 

and viral plant diseases that significantly reduce its yield. Early detection can enable the identification of infected field 

patches and plays an important role in controlling the spread of the disease. This paper presents the automated classi-

fication for bacterial blight and curl virus in cotton plants through the customized implementation of a state-of-the-art 

YOLO deep learning framework. The disease classification is performed on YOLOv5, and its performance is com-

pared against YOLOv6 and YOLOv7. The transfer learning of the pre-trained model is facilitated through an indige-

nous image dataset collected from local agricultural fields in Sindh, Pakistan. Different augmentation techniques are 

employed to increase the size and diversity of the dataset. The employed model is evaluated for various performance 

metrics, such as accuracy, mean average precision, and confusion matrix. The results indicate 92% accuracy in disease 

classifications. The confusion matrix analysis indicates up to 100% true positive rates for curl virus, and an 88% true 

positive rate for detecting bacterial blight and healthy leaves. An inference time of 25 milliseconds indicates fast 

prediction suitable for on-field real-time applications and potential incorporation of the model in the point of care 

testing (PoCT) devices. 

Keywords: Cotton disease classification, deep learning, real-time detection, YOLO.

 1.Introduction 

Agriculture is a driving force behind the economic 

growth of a country and its success is highly dependent 

on the quality and quantity of its agricultural harvests. 

Cotton cultivation stands out as a major contributor to 

both the economy and industries of a nation. Not only 

does it provide essential fiber, but it also generates oil 

and protein, making it a valuable commodity on a global 

scale (Bodhe et al., 2018). However, the cotton crop is 

vulnerable to a variety of plant diseases that have caused 

a significant decline in its yield and productivity in re-

cent years. These diseases often manifest as visible 

symptoms on the leaves of the plant, and while farmers 

have traditionally relied on their observations for diag-

nosis, this method is prone to inaccuracies and can result 

in the overuse of pesticides. This, in turn, can lead to 

further reductions in crop yield and potential harm to the 

environment. It is, therefore, of utmost importance to 

find an accurate and efficient method for diagnosing cot-

ton crop diseases. In recent years, various machine-

learning techniques and tools have been widely used to 

perform the automated detection of plant diseases in cot-

ton crops (Ahmed, 2021; Kumar et al., 2021; Prashar et 

al., 2017; Zekiwos & Bruck, 2021). The development of 

a reliable model that can diagnose cotton crop diseases 

with precision and speed is crucial to prevent the spread 

of diseases in the early stages and to ensure the right 

amount of pesticide is applied to affected plants.  

This work presents the automated cotton plant dis-

ease classification method based on you only look once 

(YOLO) deep learning model. Compared to the existing 

works, the presented work uses the locally collected da-

taset combined with the dataset available from online re-

sources and performs the detailed implementation of 

YOLOv5, and compares it with YOLOv6 and YOLOv7. 

The subsequent sections are distributed as follows: Sec-

tion II presents the review of existing literature on plant 

leaf classification. Section III discusses the methodol-

ogy of the presented implementation, and Section IV 

presents and discusses the results.  

2.Literature Review 

 The detection of crop plant diseases has been ex-

plored using various techniques and methods. Following 

is a brief review of existing relevant literature work. 

Ashourloo et al., 2016 used machine learning algo-

rithms such as partial least square regression (PLSR), ν 
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support vector regression (ν-SVR), and Gaussian pro-

cess regression (GPR) methods to detect wheat leaf rust 

disease (Ashourloo et al., 2016). They evaluated the im-

pact of the training data on the results and explored the 

influence of disease symptoms on the prediction perfor-

mance of the ML algorithms. The performance of the 

machine learning methods is compared with the spectral 

vegetation indices (SVIs). Rothe et al.,2012 introduced 

a pattern recognition-based method to identify and clas-

sify cotton leaf diseases such as Bacterial Blight, My-

rothecium, and Alternaria (Rothe & Kshirsagar, 2012). 

They collected images from the local fields and per-

formed image segmentation techniques to extract fea-

tures for the training of an adaptive neuro-fuzzy infer-

ence system. The proposed method achieved an accu-

racy of 85%. Arsenovic et al., 2019 presented a hybrid 

model known as Plant Disease Net to detect and classify 

different diseases (Arsenovic et al., 2019). They devel-

oped a dataset comprising 70,000 images and applied 

augmentation techniques to expand the data set. The im-

ages were captured under diverse weather conditions, at 

different angles, and during various daylight hours.  

The accuracy achieved with the hybrid. Xu et al., 2018 

developed a method to detect and quantify cotton flow-

ers, or blooms, using color images captured through an 

unmanned aerial system (Xu et al., 2018). They col-

lected aerial images of the field for four days and applied 

a CNN model to identify cotton blooms.  

Jubayer et al., 2021 employed YOLO v5 technique 

to identify different types of molds grown on various 

food surfaces. They developed a dataset comprising 

2050 images and trained the YOLO v5 algorithm 

(Jubayer et al., 2021).  The proposed technique gave 

better accuracy as compared to the YOLO v3 and YOLO 

v4.  The proposed YOLO v5 model gave precision and 

recall of 98.1% and 100% respectively. Qian et al., 2022 

employed a deep-learning (DL) approach using 

YOLOv5 to detect Cotton root rot (CRR) infected areas 

in a cotton field (Qian et al., 2022). They demonstrated 

the real-time capability of the algorithm by deploying it 

on a computing platform such as the Pascal GPU of the 

NVIDIA Jetson board. The GPS information can be ex-

tracted from CPR regions and the generation of the op-

timal path for the management practices is possible. The 

proposed method can be helpful for the precise applica-

tion of fungicides in cotton fields.  Wang et al., 2022 

proposed a plant disease detection and classification ap-

proach based on an optimized lightweight version of the 

YOLOv5 model to enhance the speed and accuracy of 

disease classification (Wang et al., 2022). They intro-

duced an Improved Accuracy and Speed Mechanism 

(IASM) to reduce model size. The optimized model was 

compared with the other mainstream models and the op-

timized model showed a performance improvement of 

11.8% in operation time and 3.98% in accuracy. The 

model has achieved an accuracy rate of 92.57% on the 

custom dataset. Another research presented a light-

weight detection model called Apple-YOLO, specifi-

cally designed for real-time detection of apple leaf dis-

eases on mobile terminals (Li et al., 2022). They used 

digital image processing and mosaic data augmentation 

techniques on the AppleSet8 dataset to enhance the 

model's robustness and generalization capabilities. The 

results showed that the mobile-based Apple-YOLO 

model achieved a mean average precision (mAP) of 

96.04%, an impressive inference speed of 34 frames per 

second (FPS), and a compact size of only 5.33 ME 

(model efficiency). It indicates its suitability for real-

time detection of early apple leaf diseases in practical 

scenarios. Jhatial et al., 2022 proposed a deep-learning 

model for the early identification of rice leaf diseases 

using Yolov5. The model was trained on a dataset of 400 

images of rice leaves infected with diseases. The results 

showed that the DL model has precision, recall, and 

mean average precision (mAP) values of 1.00, 0.94, and 

0.62, respectively (Jhatial et al., 2022). Xue et al., 2023. 

proposed YOLO-Tea, an enhanced version of YOLOv5 

for the precise diagnosis of tea tree leaf diseases and in-

sect pests. The proposed model outperformed Faster R-

CNN and SSD. However, the study lacks a comparison 

with other cutting-edge models and does not address the 

constraints of employing YOLO-Tea in real-world cir-

cumstances. Further research is required to determine 

how well YOLO-Tea holds up under various environ-

mental circumstances (Xue et al., 2023). Zhu et al., 2023 

proposed the Apple-Net model for the detection of apple 

leaf diseases. The Enhancement Module (FEM) and Co-

ordinate Attention (CA) methods were used to enhance 

the conventional YOLOv5 network. They showed that 

Apple-Net has a higher mAP@0.5 (95.9%) and preci-

sion (93.1%) as compared to four classic target detection 

models (Zhu et al., 2023). 
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Table 1. Comparison of different deep learning implementations for plant leaf disease detection. 

Author Year Model(s) Accuracy 
Data 

Size 
Data Source 

Ashourloo et 

al. 
2016 PLSR, ν-SVR, GPR 93% 

175 im-

ages 
Indigenous 

Rothe et al. 2015 
Adaptive neuro-fuzzy in-

ference system 
85% - Online 

Arsenovic et 

al. 
2019 

Hybrid model of Yolo 

and AlexNet 
93.67%. 

70,000 

images 
Online 

Xu et al. 2018 CNN 94% 
28,000 

images 
Indigenous 

Jubayer et al. 2021 YOLOv5 98.1% 
2050 im-

ages 
Indigenous+Online 

Qian et al. 2022 YOLOv5 93% - Indigenous 

Wang et al. 2022 
Optimized lightweight 

YOLOv5 
92.57% 

3265 im-

ages 
Indigenous+Online 

Li et al. 2022 Apple-YOLO 96.04% 
587 im-

ages 
Indigenous 

Jhatial et al. 2022 YOLOv5 62% 
400 im-

ages 
Online 

Xue et al. 2023 YOLO-Tea 82.6% 
450 im-

ages 
Indigenous 

Zhu et al. 2023 Apple-Net 95.9% 
12,500 

images 
Online 

This Work -- 
YOLOv5, YOLOv6v 

YOLOv7 

Up to 

92% 

5046 im-

ages 
Indigenous+Online 

 

 The use of deep learning models for detecting 

plant diseases has been investigated in numerous studies. 

Several of these studies utilized publicly available da-

tasets and achieved good accuracy by employing tech-

niques such as YOLOv3. However, the limited availa-

bility of appropriate image datasets has posed a chal-

lenge for many researchers in this field. Furthermore, 

the studies comparing the performance of YOLOv5, 

YOLOv6, and YOLOv7 on custom datasets are largely 

missing in the literature. Therefore, more investigation 

is required to determine the performance of these mod-

els on unique datasets with sufficient sample sizes and 

to compare the latest deep learning models such as 

YOLOv5, YOLOv6, and YOLOv7. 

3. Methodology 

 The YOLOv5 object detection model is among 

the most recent innovations in the YOLO architecture. 

The model employs a single-stage object identification 

strategy and uses transfer learning by combining a back-

bone architecture that pulls information from picture 

frames. The backbone characteristics are combined in 

the neck and relayed to the network head, where the 

model forecasts the object's position and class. One of 

the most notable features of the YOLOv5 model is its 

computational efficiency, which is accomplished by 

reducing the number of parameters and processing as 

compared to state-of-the-art real-time object detectors. 

 This work employs a transfer learning-based 

YOLOv5 model to distinguish between diseased and 

healthy cotton plant leaves. Our methodology consists 

of six essential consecutive steps. The first step involves 

the sourcing of a dataset from the local agricultural field 

which is combined with a dataset available online and is 

used to train and validate the model. In the second step, 

we utilize Roboflow to annotate all images in the dataset 

with their corresponding classes. This step involves both 

box annotation and polygon annotation to reduce noise 

in the datasets. The third step consists of implementing 

the data augmentation techniques while the fourth step 

implements the model. The last step involves the testing 

and validation of the implemented model and its com-

parison with YOLOv6 and YOLOv7. 

3.1. Dataset Collection 

The dataset is sourced in two different ways. A sig-

nificant part of the dataset was collected from local 

sources, while another part was obtained from online 

sources. A total of 1000 images were captured from the 

local agricultural fields in southern Sindh, which con-

sisted of images representing healthy leaves, and images 

of the cotton plant leaves infected with bacterial blight 

and curl virus.  
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Fig. 1. Sample images from the locally collected dataset showing (a) healthy leaf, (b) bacterial blight, and (c) curl virus in 

cotton crop plants. 

Fig. 1 shows the sample images for each of the cat-

egories. Another 1000 images representing the same 

properties were collected from Kaggle (Cotton Disease 

Dataset | Kaggle, 2022), GitHub, and Google. To avoid 

the size inconsistencies in collected images, all the im-

ages were downsized to a fixed resolution of 642×642 

pixels. 

3.2. Dataset Annotation 

Image annotation is essential before performing the 

training of a deep learning model. A deep learning model 

learns using features extracted from the images and the 

labels associated with them (Haque et al., 2022). 

Throughout the training process, a deep learning model 

acquires insights from the features of the labeled images. 

Therefore, the quality of the feature labeling greatly in-

fluences the accuracy of a model. We used Roboflow, an 

open-source framework, to perform the annotation. The 

annotation involved the manual selection of bounding 

boxes in the dataset images and the assignment of labels 

to each of the bounding boxes.  Fig.  2 shows the set 

of images annotated using Roboflow. The total dataset 

is divided into training and testing datasets. The training 

dataset contains 70%, while the testing dataset is 30%. 

Since the presented model is trained for three different 

classes, each bounding box is assigned one of three la-

bels (healthy, bacterial blight, or curl virus). The anno-

tation file generated using Roboflow contains five pa-

rameters for each dataset image, representing, class label, 

coordinates for the bounding box center, and width and 

height of the bounding box. Labeling is performed on 

both testing and training datasets to ensure that the 

model has a comprehensive understanding of the differ-

ent classes of images.  

 

 
Fig. 2. Output of Roboflow showing the annotated sample images from the dataset. 

 

3.3. Dataset Augmentation and Splitting 

The amount and diversity of the dataset are directly 

proportional to the performance of a model. The large 

number of samples solves the over-fitting issue of the 

model and helps to develop a model for the generalized 

scenarios in real-time testing. The lack of data may re-

sult in an under-fitting problem during training (Mathew 

& Mahesh, 2022). However, collecting a large amount 

of data for model training is a complicated process. Data 

augmentation is a practical and widely used tool to 

increase the size of the dataset and solve the over-fitting 

issue. Geometric image transformation is one of the 

prominent. The amount and diversity of the dataset are 

directly proportional to the performance of a model. The 

large number of samples solves the over-fitting issue of 

the model and helps to develop a model for the general-

ized scenarios in real-time testing. The lack of data may 

result in an under-fitting problem during training. How-

ever, collecting a large amount of data for model training 

is a complicated process. 



  DOI: 10.6977/IJoSI.202309_7(7).0005 

A. R. Kolachi, S. R. Soomro, etc./Int. J. Systematic Innovation, 7(7),80-88(2023) 

84 

 

Data augmentation is a practical and widely used 

tool to increase the size of the dataset and solve the over-

fitting issue. Geometric image transformation is one of 

the prominent methods used for data augmentation. We 

use four different geometric image transformation pro-

cesses (rotation, flipping, shear, and saturation) to 

perform the data augmentation which is shown in Fig. .  

3. The augmentation provided a total of 5046 images 

covering all three classes. The resultant dataset is then 

divided into training and validation datasets with a 70:30 

ratio. 

 

 
Fig. 3. Shows the samples of augmented dataset images, (a) original sample image, (b) counterclockwise rotated, (c) flipped ver-

tical, (d) vertically rotation within ±15°, and (e) Vertical shear within ±15°. 

 

3.4. YOLOv5 Architecture 

YOLOv5 (Jiang et al., 2021) is the upgraded ver-

sion of YOLOv4 that provides high detection accuracy 

and inference speed as compared to the previous and lat-

est YOLO versions such as YOLOv6 and YOLOv7 

when trained on custom datasets (Olorunshola et al., 

2023). The YOLO network is made up of three parts: (1) 

CSPDarknet as the backbone, (2) PANet as the neck, and 

(3) YOLO Layer as the head. The data is first processed 

by CSPDarknet for feature extraction, then by PANet for 

feature integration. Finally, the YOLO Layer provides 

detection results (class, score, location, and dimensions) 

for the provided input. Fig.  4 shows the overall archi-

tectures of different YOLO versions. 

The main difference between each YOLO version 

is relays on the Backbone, Neck, and Prediction layers. 

The backbone is the first part of the YOLO model that 

extracts features from the input image. The backbone in 

YOLO v5 is the CSPDarknet53, which is a variant of the 

Darknet53 architecture. The backbone in YOLO v6 and 

YOLO v7 is the CSPDarknet53-L2, which is a more ef-

ficient variant of the CSPDarknet53 architecture. The 

neck is the part of the YOLO model that connects the 

backbone to the head. The neck in YOLO v5 is the 

PANet, which is a pyramid feature network. The neck in 

YOLO v6 and YOLO v7 is the BiFPN, which is a bi-

directional feature pyramid network. Head The head is 

part of the YOLO model that predicts the bounding 

boxes and class labels for the objects in the input image. 

The head in YOLO v5 is the YOLOv3 head. The head in 

YOLO v6 and YOLO v7 is the YOLOv4 head. 

YOLO v5 uses a CNN architecture called Effi-

cientDet. EfficientDet is a very efficient architecture, 

with fewer parameters and a higher computational effi-

ciency than other CNN architectures. This makes it pos-

sible for YOLO v5 to achieve state-of-the-art results on 

various object detection benchmarks. For example, in 

the PASCAL VOC object detection benchmark, YOLO 

v5 achieved a mAP of 80.2%, which is better than the 

mAP of 79.5% achieved by YOLO v6 and the 78.9% 

achieved by YOLO v7. This shows that YOLO v5 is a 

better object detection model than YOLO v6 and YOLO 

v7. 

 

 

(a)  
(b)  
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(c)  
Fig. 4. Architecture of different YOLO models, (a) YOLOv5, (b) YOLOv6, and (c) YOLOv7 

 

3.5. Model Training 

The training of YOLOv5 involves multiple steps. 

First, the YOLO environment is created by cloning the 

GitHub source and establishing a dedicated directory in 

Google Drive with the necessary structures and pre-

trained weights. In the next step, a dataset folder is es-

tablished with the predetermined subfolders to store im-

ages and associated labels for training and test files. The 

label files are formatted to include the class identifica-

tion number and the normalized values for the bounding 

box representing its center coordinates, width, and 

height. A YAML file is set up to specify the paths to 

training and test data, the number of classes, and the la-

bels for each class. 

The model is then trained by executing the model 

training script with defined hyper-parameters such as 

image size, number of epochs, and batch size. At the end 

of the training procedure, the weights of the trained 

model are stored and later used for employing and test-

ing the model. We used the Adam optimizer with the 

Swish activation function. The number of hidden neu-

rons used is predefined by the architecture. The hidden 

layers include Convolutional, Activation (Swish), 

Downsample, and Fully Connected layers. The output 

layer provides bounding box coordinates, class predic-

tions, and confidence scores for detected objects. A 

batch size of 32 was used. 

4. Results and Discussion 

The developed YOLOv5 model was trained for 

three classes: healthy leaf, bacterial blight, and curl virus. 

The model was compared to the YOLOv6 and YOLOv7, 

which were also trained through the procedure explained 

in the previous section. The models were trained on 

Nvidia Tesla T4 GPU available through Google Colab 

(Welcome To Colaboratory - Colaboratory, n.d.). 

Precision, recall, and F-1 scores are among the key 

indicators to assess the performance of a deep learning 

model. The recall is determined as the ratio of positive 

samples that were accurately classified as positive to the 

total number of positive samples. The recall of the model 

measures its capability to recognize positive samples. 

The more positive samples are identified, the 

higher the recall will be (Wang et al., 2022b). The F1-

score consolidates a classifier's precision and recall into 

a single metric by determining their harmonic mean. Its 

primary purpose is to contrast the performance of two 

classifiers. The precision and recall can be mathemati-

cally represented using the following equations: 

 

𝑃recision  =
TP

TP +  FP
 

 

(1) 

Recall  =
TP

TP +  FN
 

 

(2) 

 Where TP is the number of instances when the tar-

geted classes are correctly identified, FP is the number 

of occurrences when the specified class is incorrectly 

identified, FN indicates the number of unidentified 

diseased and healthy parts, while TN represents the 

number of times when the model accurately categorizes 

the negative dataset as negative. 
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Fig. 5. Shows (a) Precision vs epoch, (b) Recall vs epochs, (c) mAP @0.5 vs epochs, and (d) mAP@ 0.5.0.95 of YOLOv5, 

YOLOv6 and YOLOv7. 

Fig.  5 shows the comparison of important perfor-

mance metrics of three implemented models for the de-

tection of cotton plant diseases. The results indicate a 

noticeable positive slope with fluctuations in precision 

and recall for the first 30 iterations while a stable re-

sponse is observed between 30 to 100 iterations. Fig.  

5(a) indicates high precision, up to 92%, for YOLOv5 

whereas YOLOv7 shows the lowest precision among all 

three models. Fig.  5(b) shows an identical recall trend 

for YOLOv5 and YOLOv6 while YOLOv7 depicts 

lower recall. Similarly, the mean average precision 

(mAP), shown in Fig.  5(c) and Fig.  5(d) is also 

higher for YOLOv5 when compared to the other two 

models. Fig.  6(a) shows the recall against confidence 

curves for three classes and their average. The result 

shows a higher confidence value. Similarly, Fig.  6(b) 

shows a direct relationship between precision and confi-

dence for all three classes. The results indicate 100% 

precision for the confidence value of greater than 70%. 

 

 
Fig. 6. (a) shows recall vs. confidence, (b) shows precision vs. confidence, and (c) shows the precision vs. recall for the im-

plemented YOLOv5 model. 

The present study shows the implementation of the 

multi-class problem that includes three classes, bacterial 

blight, curl virus, and fresh leave. The confusion matrix 

of the implemented YOLOv5 model is presented in Ta-

ble 2, which shows 88% true positives for healthy leaves 

and bacterial blight whereas 100% detection accuracy is 

achieved for the curl virus. The inference time for all 

implemented models is < 25 milliseconds, which indi-

cates that the proposed models can be easily imple-

mented for real-time applications.  
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Table 2. Confusion Matrix of the YOLOv5 Model 

 Bacterial Blight Curl Virus Fresh Leaf Background 

Bacterial blight 0.88 0 0 0.20 

Curl Virus 0 1.0 0 0.10 

Fresh leaf 0 0 0.88 0.70 

Background 0.12 0 0.12 0 

5. Conclusion 

We proposed and demonstrated the implementation 

of cotton plant disease detection using YOLO deep learn-

ing framework and indigenously sourced dataset. The da-

taset annotation was performed using Roboflow while dif-

ferent geometric image transformation techniques were 

employed to perform the dataset augmentation. The aug-

mented dataset was used for training three different 

YOLO versions. The precision and recall analysis indi-

cated that YOLOv5 performing better than its advanced 

versions. The confusion matrix for YOLOv5 indicated 

higher detection accuracy, greater than 88% for healthy 

leaves, curl virus, and bacterial blight. The low inference 

time showed a higher detection speed suitable for real-

time applications. The custom-trained model can be suc-

cessfully employed on mobile and embedded computing 

platforms to enable fast and reliable testing of cotton plant 

diseases and curtail their potential spread well in time. 

The current implementation shows great promise for 

disease detection in cotton crops through real-time classi-

fication. However, the present work also has some limita-

tions. Our current local dataset is only limited to 1000 im-

ages. The performance of a deep learning model highly 

depends on the size of the dataset. Further work on sourc-

ing the dataset from different localities of the region will 

further improve the accuracy and performance of the 

model. Another important limitation is processing power. 

The current implementation uses the Google Colab GPUs 

and Laptop CPU for training and testing respectively. 

However, for practical implementation, it is important to 

implement the model-embedded processing units. Future 

deployment of the presented implementation on FPGA or 

mobile processors will further improve the practicality of 

the study for disease detection in the field. 
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