AccScience Publishing / IJOSI / Volume 7 / Issue 6 / DOI: 10.6977/IJoSI.202306_7(6).0004
Cite this article
1
Download
1
Citations
18
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

A comprehensive review of fake news detection on social media: feature engineering, feature fusion, and future research directions

Deepti Nikumbh1 Anuradha Thakare1
Show Less
1 Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Savitribai Phule Pune University, Pune, India
Submitted: 10 January 2023 | Revised: 30 March 2023 | Accepted: 10 January 2023 | Published: 30 March 2023
© 2023 by the Authors. Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Social media platforms are mainly used for information sharing, connecting with people, and staying updated about the latest events. However, information present on social media is sometimes incorrect, unverified, or misleading. Such information is often termed as fake news. It is deliberately written to deceive the readers. It has the potential to change their perception about the topic or content being discussed. The best medium to share fake news is social media platforms. Large amounts of misleading or fake online information can have serious consequences. It can affect the social, political, economic well-being of individuals, society, and also a nation as a whole. Fake News in the form of satire, fabricated and manipulated content, misleading information, conspiracy theories get more likes and shares on social media and they spread quickly in no time. Thus, fake news detection (FND) and prevention on social media platforms have gained tremendous attention among researchers. Fake news through online platforms poses unique challenges. Firstly, it is written intentionally and is subjective, making it very difficult to authenticate it based on news content. Secondly, social media information is unstructured and multi-modal, both aspects are complex to capture and integrate in fake news detection. Thirdly, fake information spreads very quickly and is mainly circulated through bots, trolls, and humans from varied backgrounds. Identifying such spreaders and victims is a challenging task. This article presents a critical review of literature on fake news detection. The state-of-the-art methods are discussed, most of the methods depend on news contents, user profiles, and social context features of a post. The importance of feature engineering, feature extraction and feature fusion in FND are highlighted. Various fake news detection datasets are discussed. Finally, future research directions in the fake news detection problem are presented.

Keywords
Fake News Detection
Textual Features
Visual Features
social media
News Contents
Social Context
Deep Learning
Machine Learning
References
  1. Abidin, A.B.Z., Majid, H.B.A., Samah , A.B.A., & Hashim, H.B. (2019). Copy -Move Image Forgery Detection Using Deep Learning Methods: A Re- view, 2019 6th International Conference on Re- search and Innovation in Information Systems (ICRIIS), 1 -6. doi: 10.1109/ICRIIS48246.2019.9073569.
  2. Agarwal, A., & Dixit, A. (2020). Fake News Detection: An Ensemble Learning Approach. 2020 4th Interna- tional Conference on Intelligent Computing and Control Systems (ICICCS), 1178 -1183. doi: 10.1109/ICICCS48265.2020.9121030.
  3. Ajao, O., Bhowmik, D., & Zargari, S. (2018). Fake News Identification on Twitter with Hybrid CNN and RNN Models. In Proceedings of the 9th Inter- national Conference on Social Media and Society (SMSociety '18). Association for Computing Ma- chinery, New York, NY , USA, 226 –230. DOI: https://doi.org/10.11 45/3217804.3217917
  4. Bharadwaj, P., Shao, Z., & Darren, S. (2019). Fake News Detection With Semantic Features And Text Mining, Journal of Natural Language Processing, 8, 17-22.
  5. Boididou, C. , Andreadou, K., Papadopoulos, S., Dang -Nguyen, D. -T., Boato, G., Riegler, M. & Kompatsiaris, Y . et al. (2015). Verifying Multime- dia Use at MediaEval 2015. In Media Eval.
  6. Dong, J., Wang, W., & Tan, T. (2013). CASIA Image Tampering Detection Evaluation Database, 2013 IEEE China Summit and International Conference on Signa l and Information Processing, 422 -426. doi: 10.1109/ChinaSIP.2013.6625374.
  7. Dong, M., Yao, L., Wang, X., Benatallah, B., Zhang, X., & Sheng, Q.Z. (2019). Dual -stream Self -Atten- tive Random Forest for False Information Detec- tion. 2019 International Joint Conf erence on Neural Networks (IJCNN), 1 -8. doi: 10.1109/IJCNN.2019.8851765.
  8. Dong, X., Victor, U., & Qian, L. (2020). Two -Path Deep Semisupervised Learning for Timely Fake News Detection, in IEEE Transactions on Compu- tational Social Systems, 7(6), 1386 -1398. d oi: 10.1109/TCSS.2020.3027639.
  9. Duc Tuan, N.M. & Quang Nhat Minh, P. (2021). Multi- modal Fusion with BERT and Attention Mechanism for Fake News Detection. 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), 1 -6. doi: 10.110 9/RIVF51545.2021.9642125.
  10. Dzisevič, R. & Šešok, D. (2019). Text Classification using Different Feature Extraction Approaches, 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), 1 -4. doi: 10.1109/eStream.2019.8732167.
  11. Giachan ou, A., Zhang, G., & Rosso, P. (2020). Multi- modal Multi -image Fake News Detection, 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 647 -654. doi: 10.1109/DSAA49011.2020.00091.
  12. Girgis, S., Amer, E., & Gadallah, M. (2018) . Deep Learning Algorithms for Detecting Fake News in Online Text. 2018 13th International Conference on Computer Engineering and Systems (ICCES), 93 - 97. doi: 10.1109/ICCES.2018.8639198.
  13. Haylat , T. (2020). Introduction To Data Fusion [Online], Website https://medium.com/haileleol -ti- bebu/data -fusion -78e68e65b2d1[accessed 13 Feb- ruary 2022].
  14. Hlaing, M.M.M. & Kham, N.S.M. (2020). Defining News Authenticity on Social Media Using Machine Learning Appr oach, 2020 IEEE Conference on Computer Applications (ICCA), 2020, 1 -6. doi: 10.1109/ICCA49400.2020.9022837.
  15. Jin, Z., Cao, J., Guo, H., Zhang, Y . & Luo, J. (2017). Multimodal fusion with recurrent neural networks for rumor detection on microblogs, In Procee dings of the 2017 ACM on Multimedia Conference. ACM,
  16. Kaliyar, R.K., Goswami, A., & Narang, P. (2019). Mul- ticlass Fake News Detection using Ensemble Ma- chine Learning, 2019 IEEE 9th International Con- ference on Advanced Computing (IACC), 103 -107. doi: 10.1109 /IACC48062.2019.8971579.
  17. Kaliyar, R.K., Kumar, P., Kumar, M., Narkhede, M., Namboodiri, S., & Mishra, S. (2020). DeepNet: An Efficient Neural Network for Fake News Detection using News -User Engagements. 2020 5th Interna- tional Conference on Computing, Commu nication and Security (ICCCS), 1 -6, doi: DOI: 10.6977 /IJoSI.202306_7(6).0004 D. Nikumbh, A. Thakare/Int. J. Systematic Innovation, 7(6), 36-53(2023) 52 10.1109/ICCCS49678.2020.9277353.
  18. Kampman, O., Jebalbarezi, E., Bertero, D. & Fung, P. (2018). Investigating Audio, Video, and Text Fusion Methods for End -to-End Automatic Personality Prediction, 606 -611. 10.18653/v1 /P18-2096.
  19. Khattar, D., Goud, J.S., Gupta, M., & Varma, V . (2019). Mvae: Multimodal variational autoencoder for fake news detection. In The World Wide Web Confer- ence, 2915 –2921.
  20. Kumari, R., & Ekbal, A. (2021). AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection, Expert Systems with Applications, 184, 115412. doi:10.1016/j.eswa.2021.115412.
  21. Leyva, R., et al. (2019). Multimodal Deep Features Fu- sion for Video Memorability Prediction, Media Eval.
  22. Li, D., Guo, H., W ang, Z. & Zheng, Z. (2021). Unsu- pervised Fake News Detection Based on Autoen- coder, in IEEE Access, 9, 29356 -29365. doi: 10.1109/ACCESS.2021.3058809.
  23. Liao, Q., et al. (2021). An Integrated Multi -Task Model for Fake News Detection, in IEEE Transactions on Knowledge and Data Engineering. doi: 10.1109/TKDE.2021.3054993.
  24. Madhusudhan, S., Mahurkar, S., & Nagarajan, S.K. (2020). Attributional analysis of Multi -Modal Fake News Detection Models (Grand Challenge), 2020 IEEE Sixth International Conference on Multime- dia Big Data (BigMM), 451 -455. doi: 10.1109/BigMM50055.2020.00074.
  25. Majumder, M.T.H. & Alim Al Islam, A.B.M. (2018). A Tale of a Deep Learning Approach to Image For- gery Detection. 2018 5th International Conference on Networking, Systems and Security (NSysS), 1-9. doi: 10.1109/NSysS.2018.8631389.
  26. Mridha, M.F., Keya, A.J., Hamid, M.A., Monowar, M.M., & Rahman, M.S. (2021). A Comprehensive Review on Fake News Detection With Deep Learn- ing, in IEEE Access, 9, 156151 -156170. doi: 10.1109/ACCESS.2021.3129329.
  27. Shah, P. (2020). Multimodal fake news detection using a Cultural Algorithm with situational and normative knowledge. University of Windsor.
  28. Shu, K. & Liu, H. (2019 ). Detecting Fake News on So- cial Media, Morgan & Claypool Publishers , ISBN 9781681735825.
  29. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2020). Fake News Net: A Data Repository with News Content, Social Context, and Spatiot emporal Information for Studying Fake News on Social Me- dia, Big Data, 8, 171 -188. 10.1089/big.2020.0062.
  30. Singh, B. & Sharma, D.K. (2021). Image Forgery over Social Media Platforms - A Deep Learning Ap- proach for its Detection and Localization. 2021 8th International Conference on Computing for Sus- tainable Global Development (INDIACom), 705 - 709, doi: 10.1109/INDIACom51348.2021.00125.
  31. Singhal, S., Shah, R., Chakraborty, T., Kumaraguru, P., & Satoh, S. (2019). Spot fake: A multi -modal framework for fake 71 n ews detection. In 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), 39 –47.
  32. Shu, K., Wang, S., & Liu, H. (2018). Understanding User Profiles on Social Media for Fake News De- tection, 2018 IEEE Conference on Multimedia In- formation Proc essing and Retrieval (MIPR), 430 - 435. doi: 10.1109/MIPR.2018.00092.
  33. Shu, K., Wang, S. & Liu, H. (2019). Beyond News Contents: The Role of Social Context for Fake News Detection. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (WSDM '19). Association for Compu- ting Machinery, New York, NY , USA, 312 –320. DOI:https://doi.org/10.1145/3289600.3290994
  34. Tanwar, V . & Sharma, K. (2020). Multi -Model Fake News Detection based on Concatenation of Visual Latent Features, 2020 Inter national Conference on Communication and Signal Processing (ICCSP), 1344 -1348.doi: 10.1109/ICCSP48568.2020.9182398.
  35. Vaswani, Ashish., Shazeer, Noam., Parmar, Niki., Uszkoreit, Jakob., Jones, Llion., Gomez, Aidan., Kaiser, Lukasz., & Polosukhin, Illia. (2 017). Atten- tion is all you need, Advances in Neural Infor- mation Processing Systems 30 (NIPS 2017)
  36. Wang, J., Mao, H. & Li. (2022). FMFN: Fine - Grained Multimodal Fusion Networks for Fake News Detection, Applied Sciences, 12(3), 1093.
  37. Wang, W. Y . (2017). Liar, Liar Pants on Fire: A New Benchmark Dataset for Fake News Detection, ACL Anthology.
  38. Wang, Y . , Ma, F., Jin, Z., Yuan, Y ., Xun, G., Jha, K., Su, L., & Gao, J. (2018). Eann: Event adversarial neural networks for multi -modal fake news detec- tion. In Proceedings of the 24th acm sigkdd interna- tional conference on knowledge discovery & data mining, 849 –857.
  39. Xue, Junxiao , et al. (2021). Detecting fake news by ex- ploring the consistency of multimodal data, DOI: 10.6977 /IJoSI.202306_7(6).0004 D. Nikumbh, A. Thakare/Int. J. Systematic Innovation, 7(6), 36-53(2023) 53 Information Processing & Management, 58(5), 102610.
  40. Ying, L., Yu, H., Wang, J., Ji, Y . & Qian, S. (2021a). Fake News Detection via Multi -Modal Topic Memory Network, in IE EE Access, 9, 132818 - 132829.
  41. Ying, L., Yu, H., Wang, J., Ji, Y . & Qian, S. (2021b). Multi -Level Multi -Modal Cross -Attention Network for Fake News Detection. in IEEE Access, 9, 132363 -132373. doi: 10.1109/ACCESS.2021.3114093.
  42. Zhang, X. & Ghorbani , A. (2020). An overview of online fake news: Characterization, detection, and discussion. Inf. Process. Manag., 57, 102025.
  43. Zhang, T., et al. (2020). BDANN: BERT -Based Do- main Adaptation Neural Network for Multi -Modal Fake News Detection, 2020 Internationa l Joint Conference on Neural Networks (IJCNN), 1 -8. doi: 10.1109/IJCNN48605.2020.9206973.
  44. Zheng, Yue. (2019). modified CASIA, IEEE Data re- port. doi: https://dx.doi.org/10.21227/c1h8 -kf39
Share
Back to top
International Journal of Systematic Innovation, Electronic ISSN: 2077-8767 Print ISSN: 2077-7973, Published by AccScience Publishing