Hybrid Black Widow Optimization and Variable Neighborhood Descent Algorithm for Traveling Salesman Problem
DOI:
https://doi.org/10.6977.IJoSI.202109_6(5).0004Abstract
Local search algorithms in general are better than population-based algorithms in the terms of exploitation capability in finding more local regions in the search space which provide more ability to explore search space in finding global regions. Black widow optimization (BWO) algorithm is one of the best population-based algorithms which was proposed in 2020 to solve engineering optimization problems. However, this algorithm has a limitation in the exploitation of search space and reactivate a search when stagnation occurs during the algorithm run. Thus, deep search and effectively exploring the search space are not possible during the algorithm run. To overcome these drawbacks, this study proposes two modifications to the BWO algorithm. The first modification is the integration of variable neighborhood descent used to enhance the exploitation process in finding more local regions in the neighborhood during the algorithm run. The second modification focuses on the reactive search process by integrating a new convergence indicator for the algorithm during the algorithm run and online reactive search process. Two benchmark datasets were used to evaluate the proposed modification. The minimum tour distance provided by each algorithm has been used as the performance metric in determining the credibility of the hybrid BWO algorithm and results have been compared with best-known algorithms include African buffalo optimization (ABO), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO) and a hybrid algorithm consisting of harmony search. particle swarm and ACO (HPSACO). The hybrid BWO algorithm has produced better minimum tour distance compared to ABO, ACO, ABC, PSO and HPSACO algorithms which demonstrate that the hybrid BWO can be applied to solve several optimization problems including vehicle routing problem, classification and clustering.
Downloads
Published
Issue
Section
License
Copyright in a work is a bundle of rights. IJoSI's, copyright covers what may be done with the work in terms of making copies, making derivative works, abstracting parts of it for citation or quotation elsewhere and so on. IJoSI requires authors to sign over rights when their article is ready for publication so that the publisher from then on owns the work. Until that point, all rights belong to the creator(s) of the work. The format of IJoSI copy right form can be found at the IJoSI web site.The issues of International Journal of Systematic Innovation (IJoSI) are published in electronic format and in print. Our website, journal papers, and manuscripts etc. are stored on one server. Readers can have free online access to our journal papers. Authors transfer copyright to the publisher as part of a journal publishing agreement, but have the right to:
1. Share their article for personal use, internal institutional use and scholarly sharing purposes, with a DOI link to the version of record on our server.
2. Retain patent, trademark and other intellectual property rights (including research data).
3. Proper attribution and credit for the published work.